Shi Jing, Chen Wei-Fei, Zhang Bo, Fan San-Hong, Ai Xia, Liu Na-Nv, Rety Stephane, Xi Xu-Guang
From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
the Institut de Biochimie et Chimie des Protéines, CNRS UMR 5086, 7 Passage du Vercors, 69367 Lyon, France, and
J Biol Chem. 2017 Apr 7;292(14):5909-5920. doi: 10.1074/jbc.M116.761510. Epub 2017 Feb 22.
Helicases play a critical role in processes such as replication or recombination by unwinding double-stranded DNA; mutations of these genes can therefore have devastating biological consequences. In humans, mutations in genes of three members of the RecQ family helicases (, , and ) give rise to three strikingly distinctive clinical phenotypes: Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. However, the molecular basis for these varying phenotypic outcomes is unclear, in part because a full mechanistic description of helicase activity is lacking. Because the helicase core domains are highly conserved, it has been postulated that functional differences among family members might be explained by significant differences in the N-terminal domains, but these domains are poorly characterized. To help fill this gap, we now describe bioinformatics, biochemical, and structural data for three vertebrate BLM proteins. We pair high resolution crystal structures with SAXS analysis to describe an internal, highly conserved sequence we term the dimerization helical bundle in N-terminal domain (DHBN). We show that, despite the N-terminal domain being loosely structured and potentially lacking a defined three-dimensional structure in general, the DHBN exists as a dimeric structure required for higher order oligomer assembly. Interestingly, the unwinding amplitude and rate decrease as BLM is assembled from dimer into hexamer, and also, the stable DHBN dimer can be dissociated upon ATP hydrolysis. Thus, the structural and biochemical characterizations of N-terminal domains will provide new insights into how the N-terminal domain affects the structural and functional organization of the full BLM molecule.
解旋酶通过解开双链DNA在复制或重组等过程中发挥关键作用;因此,这些基因的突变可能会产生毁灭性的生物学后果。在人类中,RecQ家族解旋酶的三个成员(、和)的基因突变分别导致三种截然不同的临床表型:布卢姆综合征、沃纳综合征和罗思蒙德 - 汤姆森综合征。然而,这些不同表型结果的分子基础尚不清楚,部分原因是缺乏对解旋酶活性的完整机制描述。由于解旋酶核心结构域高度保守,有人推测家族成员之间的功能差异可能由N端结构域的显著差异来解释,但这些结构域的特征尚不明确。为了填补这一空白,我们现在描述了三种脊椎动物BLM蛋白的生物信息学、生化和结构数据。我们将高分辨率晶体结构与小角X射线散射分析相结合,以描述一个我们称为N端结构域二聚化螺旋束(DHBN)的内部高度保守序列。我们表明,尽管N端结构域通常结构松散且可能缺乏明确的三维结构,但DHBN以高阶寡聚体组装所需的二聚体结构存在。有趣的是,随着BLM从二聚体组装成六聚体,解旋幅度和速率会降低,而且,稳定的DHBN二聚体可在ATP水解时解离。因此,N端结构域的结构和生化特征将为N端结构域如何影响完整BLM分子的结构和功能组织提供新的见解。