Suppr超能文献

工程 rTCA 途径和 C4-二羧酸转运体用于 L-苹果酸生产。

Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.

机构信息

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.

出版信息

Appl Microbiol Biotechnol. 2017 May;101(10):4041-4052. doi: 10.1007/s00253-017-8141-8. Epub 2017 Feb 22.

Abstract

L-Malic acid is an important component of a vast array of food additives, antioxidants, disincrustants, pharmaceuticals, and cosmetics. Here, we presented a pathway optimization strategy and a transporter modification approach to reconstruct the L-malic acid biosynthesis pathway and transport system, respectively. First, pyruvate carboxylase (pyc) and malate dehydrogenase (mdh) from Aspergillus flavus and Rhizopus oryzae were combinatorially overexpressed to construct the reductive tricarboxylic acid (rTCA) pathway for L-malic acid biosynthesis. Second, the L-malic acid transporter (Spmae) from Schizosaccharomyces pombe was engineered by removing the ubiquitination motification to enhance the L-malic acid efflux system. Finally, the L-malic acid pathway was optimized by controlling gene expression levels, and the final L-malic acid concentration, yield, and productivity were up to 30.25 g L, 0.30 g g, and 0.32 g L h in the resulting strain W4209 with CaCO as a neutralizing agent, respectively. In addition, these corresponding parameters of pyruvic acid remained at 30.75 g L, 0.31 g g, and 0.32 g L h, respectively. The metabolic engineering strategy used here will be useful for efficient production of L-malic acid and other chemicals.

摘要

L-苹果酸是各种食品添加剂、抗氧化剂、除垢剂、药物和化妆品的重要组成部分。在这里,我们提出了一种途径优化策略和一种转运蛋白修饰方法,分别重建 L-苹果酸生物合成途径和运输系统。首先,通过组合过表达黄曲霉和米根霉的丙酮酸羧化酶(pyc)和苹果酸脱氢酶(mdh)来构建用于 L-苹果酸生物合成的还原性三羧酸(rTCA)途径。其次,通过去除泛素化修饰来工程化裂殖酵母的 L-苹果酸转运蛋白(Spmae),以增强 L-苹果酸外排系统。最后,通过控制基因表达水平优化 L-苹果酸途径,最终在以碳酸钙为中和剂的菌株 W4209 中,L-苹果酸浓度、产率和生产率分别达到 30.25 g/L、0.30 g/g 和 0.32 g/L/h。此外,丙酮酸的这些相应参数分别保持在 30.75 g/L、0.31 g/g 和 0.32 g/L/h。这里使用的代谢工程策略将有助于高效生产 L-苹果酸和其他化学品。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验