Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
Nat Commun. 2017 Feb 23;8:14591. doi: 10.1038/ncomms14591.
Cytoplasmic dyneins drive microtubule-based, minus-end directed transport in eukaryotic cells. Whereas cytoplasmic dynein 1 has been widely studied, IFT dynein has received far less attention. Here, we use fluorescence microscopy of labelled motors in living Caenorhabditis elegans to investigate IFT-dynein motility at the ensemble and single-molecule level. We find that while the kinesin composition of motor ensembles varies along the track, the amount of dynein remains relatively constant. Remarkably, this does not result in directionality changes of cargo along the track, as has been reported for other opposite-polarity, tug-of-war motility systems. At the single-molecule level, IFT-dynein trajectories reveal unexpected dynamics, including diffusion at the base, and pausing and directional switches along the cilium. Stochastic simulations show that the ensemble IFT-dynein distribution depends upon the probability of single-motor directional switches. Our results provide quantitative insight into IFT-dynein dynamics in vivo, shedding light on the complex functioning of dynein motors in general.
细胞质动力蛋白驱动真核细胞中基于微管的负向运输。虽然细胞质动力蛋白 1 已被广泛研究,但 IFT 动力蛋白受到的关注要少得多。在这里,我们使用活线虫 Caenorhabditis elegans 中标记的马达的荧光显微镜,在整体和单分子水平上研究 IFT 动力蛋白的运动。我们发现,尽管沿着轨道马达整体的驱动蛋白组成会发生变化,但动力蛋白的数量相对保持不变。值得注意的是,这并不会导致货物沿着轨道的方向发生变化,这与其他相反极性的拔河运动系统的报告不同。在单分子水平上,IFT 动力蛋白轨迹揭示了出人意料的动力学,包括在基部的扩散,以及在纤毛上的暂停和定向开关。随机模拟表明,整体 IFT 动力蛋白的分布取决于单个马达定向开关的概率。我们的结果提供了对体内 IFT 动力蛋白动力学的定量见解,为一般的动力蛋白马达的复杂功能提供了线索。