磁调整合素配体的连接移动性调节干细胞的黏附、铺展和分化。

Magnetically Tuning Tether Mobility of Integrin Ligand Regulates Adhesion, Spreading, and Differentiation of Stem Cells.

机构信息

Shenzhen Research Institute, The Chinese University of Hong Kong , Hong Kong, China.

China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.

出版信息

Nano Lett. 2017 Mar 8;17(3):1685-1695. doi: 10.1021/acs.nanolett.6b04958. Epub 2017 Feb 27.

Abstract

Cells sense and respond to the surrounding microenvironment through binding of membranous integrin to ligands such as the Arg-Gly-Asp (RGD) peptide. Previous studies show that the RGD tether properties on substrate influence cell adhesion and spreading, but few studies have reported strategies to control the tether mobility of RGD on substrate via a physical and noncontact approach. Herein, we demonstrate a novel strategy to tune the tether mobility of RGD on substrate via magnetic force. We conjugate a monolayer of RGD-bearing magnetic nanoparticles (MNPs) on a glass substrate via the flexible and coiled poly(ethylene glycol) linker of large molecular weight (PEG, average MW: 2000), and this increases the RGD tether mobility, which can be significantly reduced by applying magnetic attraction on MNPs. Our data show that high RGD tether mobility delays the early adhesion and spreading of human mesenchymal stem cells (hMSCs), leading to compromised osteogenic differentiation at later stage. In contrast, hMSCs cultured on substrate with restricted RGD tether mobility, achieved either via a shorter PEG linker (MW: 200) or magnetic force, show significantly better adhesion, spreading, and osteogenic differentiation. The control utilizing RGD-bearing nonmagnetic nanoparticles shows no such enhancing effect of magnetic field on cellular events, further supporting our conjecture of magnetic tuning of RGD tether mobility. We hypothesize that high tether mobility of RGD entails additional time and effort by the cells to fully develop traction force and mechanical feedback, thereby delaying the maturation of FAs and activation of subsequent mechanotransduction signaling. Our staining results of vinculin, a critical component of FAs, and Yes-associated protein (YAP), an important mechanosensitive transcriptional factor, support our hypothesis. We believe that our work not only sheds light on the impact of dynamic presentation of cell adhesive ligands on cellular behaviors, which should be taken into consideration for designing novel biomaterials, but also formulate an effective noncontact strategy that enables further investigation on the mechanobiological mechanisms underlying such cellular responses.

摘要

细胞通过膜整联蛋白与配体(如精氨酸-甘氨酸-天冬氨酸(RGD)肽)结合来感知和响应周围的微环境。先前的研究表明,基质上 RGD 键的性质会影响细胞的黏附和铺展,但很少有研究报道通过物理和非接触的方法来控制基质上 RGD 的键的移动性。在此,我们展示了一种通过磁力调节 RGD 在基质上键的移动性的新策略。我们通过柔性卷曲的高分子量聚乙二醇(PEG,平均分子量:2000)连接剂将单层 RGD 结合的磁性纳米颗粒(MNPs)偶联到玻璃基底上,这增加了 RGD 键的移动性,通过对 MNPs 施加磁力吸引力可以显著降低 RGD 键的移动性。我们的数据表明,高 RGD 键的移动性延迟了人骨髓间充质干细胞(hMSC)的早期黏附和铺展,导致后期成骨分化受损。相比之下,在限制 RGD 键的移动性的基底上培养的 hMSC,通过使用较短的 PEG 连接子(MW:200)或磁力,表现出明显更好的黏附、铺展和成骨分化。利用带有 RGD 的非磁性纳米颗粒的对照实验没有显示磁场对细胞事件的增强效应,进一步支持了我们对 RGD 键的移动性进行磁力调节的假设。我们假设,RGD 高键的移动性需要细胞花费额外的时间和精力来充分发展牵引力和机械反馈,从而延迟 FA 的成熟和后续机械转导信号的激活。我们对黏着斑关键成分 vinculin 和重要的机械敏感转录因子 Yes 相关蛋白(YAP)的染色结果支持了我们的假设。我们相信,我们的工作不仅揭示了细胞黏附配体动态呈现对细胞行为的影响,在设计新型生物材料时应考虑这一点,而且还制定了一种有效的非接触策略,使我们能够进一步研究这些细胞反应背后的力学生物学机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索