Institute for Organic Chemistry, Technical University Bergakademie Freiberg , Leipziger Straße 29, 09596 Freiberg, Germany.
Department of Microbiology, Cornell University , Ithaca, New York 14853, United States.
Environ Sci Technol. 2017 Apr 4;51(7):3714-3724. doi: 10.1021/acs.est.6b05730. Epub 2017 Mar 15.
Dehalococcoides mccartyi strain CBDB1 and Dehalobacter strain 14DCB1 are organohalide-respiring microbes of the phyla Chloroflexi and Firmicutes, respectively. Here, we report the transformation of chloroanilines by these two bacterial strains via dissimilar dehalogenation pathways and discuss the underlying mechanism with quantum chemically calculated net atomic charges of the substrate Cl, H, and C atoms. Strain CBDB1 preferentially removed Cl doubly flanked by two Cl or by one Cl and NH, whereas strain 14DCB1 preferentially dechlorinated Cl that has an ortho H. For the CBDB1-mediated dechlorination, comparative analysis with Hirshfeld charges shows that the least-negative Cl discriminates active from nonactive substrates in 14 out of 15 cases and may represent the preferred site of primary attack through cob(I)alamin. For the latter trend, three of seven active substrates provide strong evidence, with partial support from three of the remaining four substrates. Regarding strain 14DCB1, the most positive carbon-attached H atom discriminates active from nonactive chloroanilines in again 14 out of 15 cases. Here, regioselectivity is governed for 10 of the 11 active substrates by the most positive H attached to the highest-charge (most positive or least negative) aromatic C carrying the Cl to be removed. These findings suggest the aromatic ring H as primary site of attack through the supernucleophile Co(I), converting an initial H bond to a full electron transfer as start of the reductive dehalogenation. For both mechanisms, one- and two-electron transfer to Cl (strain CBDB1) or H (strain 14DCB1) are compatible with the presently available data. Computational chemistry research into reaction intermediates and pathways may further aid in understanding the bacterial reductive dehalogenation at the molecular level.
Dehalococcoides mccartyi 菌株 CBDB1 和 Dehalobacter 菌株 14DCB1 分别是绿弯菌门和厚壁菌门的有机卤化物呼吸微生物。在这里,我们通过两种不同的脱卤化途径报告了这两种细菌菌株对氯苯胺的转化,并通过量子化学计算的底物 Cl、H 和 C 原子的净原子电荷讨论了潜在的机制。菌株 CBDB1 优先去除被两个 Cl 或一个 Cl 和 NH 双包围的 Cl,而菌株 14DCB1 优先脱除具有邻位 H 的 Cl。对于 CBDB1 介导的脱氯,与 Hirshfeld 电荷的比较分析表明,在 15 个案例中有 14 个情况下,最负 Cl 可区分活性和非活性底物,并且可能代表通过 cob(I)alamin 进行初始攻击的首选部位。对于后一种趋势,7 个活性底物中的 3 个提供了强有力的证据,其余 4 个底物中的 3 个提供了部分支持。对于菌株 14DCB1,在再次 15 个案例中有 14 个案例中,最正的与碳相连的 H 原子可区分活性和非活性氯苯胺。在这里,对于 11 个活性底物中的 10 个,区域选择性由要去除的 Cl 所连接的最高电荷(最正或最负)芳族 C 上的最正 H 原子决定。这些发现表明芳香环 H 是通过超亲核 Co(I)进行初始攻击的主要部位,将初始 H 键转化为全电子转移,作为还原脱卤化的开始。对于这两种机制,单电子和双电子转移到 Cl(菌株 CBDB1)或 H(菌株 14DCB1)与目前可用的数据兼容。对反应中间体和途径的计算化学研究可能有助于进一步了解细菌在分子水平上的还原脱卤化。