Chen L, Ma K, Han J, Chen Q, Zhu Y
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China.
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Methods Enzymol. 2017;588:187-208. doi: 10.1016/bs.mie.2016.10.038. Epub 2016 Dec 9.
In eukaryotes, physiological cell functions rely on the preservation of the size and activity of the mitochondrial network. Mitophagy provides a key contribution in this setting by ensuring the removal of permeabilized or supernumerary mitochondria. Throughout the past decade, mitophagy has attracted considerable attention from both fundamental researchers and translational investigators, both of whom have called for the development of techniques that allow the precise quantification of mitophagy (as opposed to general autophagy). In this chapter, we present morphological, biochemical, and fluorescence-based approaches to measure autophagy in mammalian cells, and discuss recent progress in mouse models for the assessment of mitophagy in vivo.
在真核生物中,细胞的生理功能依赖于线粒体网络大小和活性的维持。线粒体自噬通过确保清除通透性改变或多余的线粒体,在这一过程中发挥关键作用。在过去十年中,线粒体自噬引起了基础研究人员和转化医学研究人员的广泛关注,他们都呼吁开发能够精确量化线粒体自噬(与一般自噬相对)的技术。在本章中,我们介绍了用于测量哺乳动物细胞自噬的形态学、生物化学和基于荧光的方法,并讨论了在体内评估线粒体自噬的小鼠模型的最新进展。