Suppr超能文献

针对活性态μ-阿片受体的骆驼科单域抗体的H、C和N主链化学位移归属

H, C and N backbone chemical shift assignments of camelid single-domain antibodies against active state µ-opioid receptor.

作者信息

Sounier Remy, Yang Yinshan, Hagelberger Joanna, Granier Sébastien, Déméné Hélène

机构信息

Institut de Genomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, F-34094, Montpellier, France.

Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054, University of Montpellier, 29 rue de Navacelles, 34090, Montpellier Cedex, France.

出版信息

Biomol NMR Assign. 2017 Apr;11(1):117-121. doi: 10.1007/s12104-017-9733-z. Epub 2017 Feb 26.

Abstract

Nanobodies are single chain antibodies that have become a highly valuable and versatile tool for biomolecular and therapeutic research. One application field is the stabilization of active states of flexible proteins, among which G-protein coupled receptors represent a very important class of membrane proteins. Here we present the backbone and side-chain assignment of the H, C and N resonances of Nb33 and Nb39, two nanobodies that recognize and stabilize the µ-opioid receptor to opioids in its active agonist-bound conformation. In addition, we present a comparison of their secondary structures as derived from NMR chemical shifts.

摘要

纳米抗体是单链抗体,已成为生物分子和治疗研究中极具价值且用途广泛的工具。一个应用领域是稳定柔性蛋白质的活性状态,其中G蛋白偶联受体是一类非常重要的膜蛋白。在此,我们展示了Nb33和Nb39这两种纳米抗体的H、C和N共振的主链和侧链归属,这两种纳米抗体可识别并稳定处于活性激动剂结合构象的μ-阿片受体与阿片类物质的结合。此外,我们还比较了由NMR化学位移推导得出的它们的二级结构。

相似文献

1
H, C and N backbone chemical shift assignments of camelid single-domain antibodies against active state µ-opioid receptor.
Biomol NMR Assign. 2017 Apr;11(1):117-121. doi: 10.1007/s12104-017-9733-z. Epub 2017 Feb 26.
2
Chemical shift assignments of a camelid nanobody against aflatoxin B.
Biomol NMR Assign. 2019 Apr;13(1):75-78. doi: 10.1007/s12104-018-9855-y. Epub 2018 Oct 16.
3
Structure of Nanobody Nb23.
Molecules. 2021 Jun 11;26(12):3567. doi: 10.3390/molecules26123567.
4
Nanobodies derived from Camelids represent versatile biomolecules for biomedical applications.
Biomater Sci. 2020 Jul 7;8(13):3559-3573. doi: 10.1039/d0bm00574f. Epub 2020 Jun 3.
5
A review on camelid nanobodies with potential application in veterinary medicine.
Vet Res Commun. 2024 Aug;48(4):2051-2068. doi: 10.1007/s11259-024-10432-x. Epub 2024 Jun 13.
6
Applications of Nanobodies.
Annu Rev Anim Biosci. 2021 Feb 16;9:401-421. doi: 10.1146/annurev-animal-021419-083831. Epub 2020 Nov 24.
8
A novel nanobody-based bio-assay using functional complementation of a split nanoluciferase to monitor Mu- opioid receptor activation.
Anal Bioanal Chem. 2020 Nov;412(29):8015-8022. doi: 10.1007/s00216-020-02945-6. Epub 2020 Sep 14.
9
Nanobodies to Study G Protein-Coupled Receptor Structure and Function.
Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:19-37. doi: 10.1146/annurev-pharmtox-010716-104710. Epub 2016 Dec 7.
10
Camelid nanobodies: killing two birds with one stone.
Curr Opin Struct Biol. 2015 Jun;32:1-8. doi: 10.1016/j.sbi.2015.01.001. Epub 2015 Jan 19.

引用本文的文献

1
Molecular insights into the biased signaling mechanism of the μ-opioid receptor.
Mol Cell. 2021 Oct 21;81(20):4165-4175.e6. doi: 10.1016/j.molcel.2021.07.033. Epub 2021 Aug 24.
2
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures.
Nat Rev Drug Discov. 2019 Jan;18(1):59-82. doi: 10.1038/nrd.2018.180. Epub 2018 Nov 9.

本文引用的文献

1
Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer.
EBioMedicine. 2016 Jun;8:40-48. doi: 10.1016/j.ebiom.2016.04.028. Epub 2016 Apr 30.
2
Structural insights into µ-opioid receptor activation.
Nature. 2015 Aug 20;524(7565):315-21. doi: 10.1038/nature14886. Epub 2015 Aug 5.
3
Propagation of conformational changes during μ-opioid receptor activation.
Nature. 2015 Aug 20;524(7565):375-8. doi: 10.1038/nature14680. Epub 2015 Aug 5.
4
High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein.
Protein Expr Purif. 2013 Sep;91(1):42-8. doi: 10.1016/j.pep.2013.07.001. Epub 2013 Jul 13.
5
Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks.
J Biomol NMR. 2013 Jul;56(3):227-41. doi: 10.1007/s10858-013-9741-y. Epub 2013 Jun 2.
6
Energy landscapes as a tool to integrate GPCR structure, dynamics, and function.
Physiology (Bethesda). 2010 Oct;25(5):293-303. doi: 10.1152/physiol.00002.2010.
7
Gifa V. 4: A complete package for NMR data set processing.
J Biomol NMR. 1996 Dec;8(4):445-52. doi: 10.1007/BF00228146.
8
Pain market.
Nat Rev Drug Discov. 2010 Aug;9(8):589-90. doi: 10.1038/nrd3226. Epub 2010 Jul 23.
9
Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4586-91. doi: 10.1073/pnas.0505379103. Epub 2006 Mar 13.
10
The CCPN data model for NMR spectroscopy: development of a software pipeline.
Proteins. 2005 Jun 1;59(4):687-96. doi: 10.1002/prot.20449.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验