Bardaji Leire, Añorga Maite, Ruiz-Masó José A, Del Solar Gloria, Murillo Jesús
Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra Pamplona, Spain.
Molecular Biology of Gram-Positive Bacteria, Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas) Madrid, Spain.
Front Microbiol. 2017 Feb 13;8:190. doi: 10.3389/fmicb.2017.00190. eCollection 2017.
Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of , including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities.
质粒是细菌通过水平基因转移进行进化的主要因素,包括致病性基因的传播、抗生素抗性以及污染物降解。它们的复制能力取决于其复制决定因素(复制子),这些因素也决定了它们的细菌宿主范围以及与相关复制子共存的能力。我们对来自丁香假单胞菌致病变种pv. savastanoi的毒性质粒pPsv48C中的第二个复制子进行了表征,它似乎是一种天然嵌合体,由一个新描述的复制蛋白编码基因和广泛存在的PFP毒性质粒家族中一个假定的复制控制区域组成。我们提供了大量证据,证明在包括环境细菌以及植物、动物和人类病原体在内的多种物种的结构相似的复制子中存在这种嵌合现象。我们确定这些复制子由两个功能模块组成,分别对应于假定的控制区域(REx-C模块)和复制区域(REx-R模块)。这些模块在功能上是可分离的,彼此之间没有特异性,并且在四个不同质粒家族的复制子之间动态交换。只有REx-C模块表现出强烈的不相容性,而这种不相容性可以通过假定反义RNA茎环结构中聚集的少数核苷酸变化来克服。此外,来自pPsv48C的REx-C模块赋予了一个非复制性染色体DNA区域复制能力,该区域包含与复制子相关的特征。因此,质粒复制子组织成独立且可交换的功能模块,可能有助于复制子的快速进化,促进其多样化和生存,此外还允许将合适的基因潜在地纳入新的复制子,并人工构建新的复制子特异性。