Suppr超能文献

酶促纤维素水解的机理动力学模型——综述

Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review.

作者信息

Jeoh Tina, Cardona Maria J, Karuna Nardrapee, Mudinoor Akshata R, Nill Jennifer

机构信息

Biological and Agricultural Engineering, University of California, Davis, California.

Chemical Engineering, University of California, Davis, California.

出版信息

Biotechnol Bioeng. 2017 Jul;114(7):1369-1385. doi: 10.1002/bit.26277. Epub 2017 Mar 20.

Abstract

Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc.

摘要

木质纤维素的生物转化是可再生先进生物燃料和生物产品的基础。纤维素酶水解纤维素的机制已被积极研究了近70年,对纤维素分解酶的理解有了显著进展。然而,对水解反应的完整机制理解仍然难以捉摸。我们进行了一项综述,以突出自Bansal等人(2009年,《生物技术进展》27:833 - 848)对纤维素水解动力学模型进行最新全面综述以来获得的新见解。最近的模型采用了双管齐下的方法来应对对复杂多相反应进行建模的挑战——一种以酶为中心的建模方法,以纤维素酶 - 纤维素相互作用的分子性为中心,研究限速基本步骤;以及一种以底物为中心的建模方法,旨在捕捉不溶性纤维素底物的限制性质。总体而言,建模结果表明,在分子尺度上,纤维素酶有效结合(络合)和从纤维素释放(解络合)的速度是限制因素,而总体水解速率对催化速率常数基本不敏感。不溶性底物的表面积和反应中纤维素分子的聚合度仅限制初始水解速率。以酶为中心的模型和以底物为中心的模型都不能始终如一地捕捉延长反应时间后的水解时间进程。因此,延长反应时间时真正的反应限制因素以及络合和解络合在速率限制中的作用问题仍未解决。《生物技术与生物工程》2017年;114:1369 - 1385。©2017威利期刊公司

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验