Suppr超能文献

胶体金属氧化物纳米晶作为电荷传输层用于溶液处理发光二极管和太阳能电池。

Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells.

机构信息

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.

Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.

出版信息

Chem Soc Rev. 2017 Mar 21;46(6):1730-1759. doi: 10.1039/c6cs00122j.

Abstract

Colloidal metal oxide nanocrystals offer a unique combination of excellent low-temperature solution processability, rich and tuneable optoelectronic properties and intrinsic stability, which makes them an ideal class of materials as charge transporting layers in solution-processed light-emitting diodes and solar cells. Developing new material chemistry and custom-tailoring processing and properties of charge transporting layers based on oxide nanocrystals hold the key to boosting the efficiency and lifetime of all-solution-processed light-emitting diodes and solar cells, and thereby realizing an unprecedented generation of high-performance, low-cost, large-area and flexible optoelectronic devices. This review aims to bridge two research fields, chemistry of colloidal oxide nanocrystals and interfacial engineering of optoelectronic devices, focusing on the relationship between chemistry of colloidal oxide nanocrystals, processing and properties of charge transporting layers and device performance. Synthetic chemistry of colloidal oxide nanocrystals, ligand chemistry that may be applied to colloidal oxide nanocrystals and chemistry associated with post-deposition treatments are discussed to highlight the ability of optimizing processing and optoelectronic properties of charge transporting layers. Selected examples of solution-processed solar cells and light-emitting diodes with oxide-nanocrystal charge transporting layers are examined. The emphasis is placed on the correlation between the properties of oxide-nanocrystal charge transporting layers and device performance. Finally, three major challenges that need to be addressed in the future are outlined. We anticipate that this review will spur new material design and simulate new chemistry for colloidal oxide nanocrystals, leading to charge transporting layers and solution-processed optoelectronic devices beyond the state-of-the-art.

摘要

胶体金属氧化物纳米晶提供了卓越的低温溶液加工性、丰富可调的光电性能和固有稳定性的独特组合,使其成为一种理想的电荷传输层材料,适用于溶液处理的发光二极管和太阳能电池。开发基于氧化物纳米晶的新材料化学和定制电荷传输层的处理和性能是提高全溶液处理发光二极管和太阳能电池效率和寿命的关键,从而实现具有空前高性能、低成本、大面积和灵活性的光电设备。

本综述旨在弥合胶体氧化物纳米晶化学和光电设备界面工程这两个研究领域之间的差距,重点关注胶体氧化物纳米晶化学、电荷传输层的处理和性能与器件性能之间的关系。讨论了胶体氧化物纳米晶的合成化学、可能应用于胶体氧化物纳米晶的配体化学以及与后沉积处理相关的化学,以突出优化电荷传输层的处理和光电性能的能力。考察了具有氧化物纳米晶电荷传输层的溶液处理太阳能电池和发光二极管的一些实例。重点放在氧化物纳米晶电荷传输层的性质与器件性能之间的相关性上。最后,概述了未来需要解决的三个主要挑战。我们预计,这篇综述将激发新的材料设计和模拟胶体氧化物纳米晶的新化学,从而实现超越现有技术的电荷传输层和溶液处理光电设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验