Suppr超能文献

真菌胞外纤维二糖脱氢酶在原核和真核表达系统中的分子和催化特性。

Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems.

机构信息

Department of Food Sciences and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.

UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France.

出版信息

Microb Cell Fact. 2017 Feb 28;16(1):37. doi: 10.1186/s12934-017-0653-5.

Abstract

BACKGROUND

Cellobiose dehydrogenase (CDH) is an extracellular enzyme produced by lignocellulolytic fungi. cdh gene expression is high in cellulose containing media, but relatively low CDH concentrations are found in the supernatant of fungal cultures due to strong binding to cellulose. Therefore, heterologous expression of CDH in Pichia pastoris was employed in the last 15 years, but the obtained enzymes were over glycosylated and had a reduced specific activity.

RESULTS

We compare the well-established CDH expression host P. pastoris with the less frequently used hosts Escherichia coli, Aspergillus niger, and Trichoderma reesei. The study evaluates the produced quantity and protein homogeneity of Corynascus thermophilus CDH in the culture supernatants, the purification, and finally compares the enzymes in regard to cofactor loading, glycosylation, catalytic constants and thermostability.

CONCLUSIONS

Whereas E. coli could only express the catalytic dehydrogenase domain of CDH, all eukaryotic hosts could express full length CDH including the cytochrome domain. The CDH produced by T. reesei was most similar to the CDH originally isolated from the fungus C. thermophilus in regard to glycosylation, cofactor loading and catalytic constants. Under the tested experimental conditions the fungal expression hosts produce CDH of superior quality and uniformity compared to P. pastoris.

摘要

背景

纤维二糖脱氢酶(CDH)是一种由木质纤维素分解真菌产生的细胞外酶。cdh 基因在含纤维素的培养基中表达量高,但由于与纤维素的强烈结合,真菌培养物的上清液中发现的 CDH 浓度相对较低。因此,在过去的 15 年中,毕赤酵母被用于 CDH 的异源表达,但获得的酶过度糖基化,比活降低。

结果

我们比较了经过充分验证的 CDH 表达宿主毕赤酵母与使用较少的宿主大肠杆菌、黑曲霉和里氏木霉。本研究评估了康宁木霉 CDH 在培养上清液中的产量和蛋白质均一性,以及纯化,最后比较了这些酶在辅因子加载、糖基化、催化常数和热稳定性方面的差异。

结论

虽然大肠杆菌只能表达 CDH 的催化脱氢酶结构域,但所有真核宿主都可以表达包括细胞色素结构域在内的全长 CDH。在测试的实验条件下,与从真菌康宁木霉中分离出来的 CDH 相比,里氏木霉产生的 CDH 在糖基化、辅因子加载和催化常数方面最为相似。与毕赤酵母相比,真菌表达宿主产生的 CDH 在质量和均一性方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0994/5331742/11b15c5f8cde/12934_2017_653_Fig1_HTML.jpg

相似文献

2
Heterologous expression of Phanerochaete chrysosporium cellobiose dehydrogenase in Trichoderma reesei.
Microb Cell Fact. 2021 Jan 6;20(1):2. doi: 10.1186/s12934-020-01492-0.
3
Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli.
Biotechnol Lett. 2010 Jun;32(6):855-9. doi: 10.1007/s10529-010-0215-y. Epub 2010 Feb 7.
5
Expression of cellobiose dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization.
Protein Expr Purif. 2011 Jan;75(1):63-9. doi: 10.1016/j.pep.2010.08.003. Epub 2010 Aug 13.
7
Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cells.
Biotechnol J. 2012 Nov;7(11):1359-66. doi: 10.1002/biot.201200049. Epub 2012 Aug 14.
9
Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation.
Appl Environ Microbiol. 2012 Sep;78(17):6161-71. doi: 10.1128/AEM.01503-12. Epub 2012 Jun 22.

引用本文的文献

1
Current Understanding on the Heterogenous Expression of Plastic Depolymerising Enzymes in .
Bioengineering (Basel). 2025 Jan 14;12(1):68. doi: 10.3390/bioengineering12010068.
2
Exploring class III cellobiose dehydrogenase: sequence analysis and optimized recombinant expression.
Microb Cell Fact. 2024 May 23;23(1):146. doi: 10.1186/s12934-024-02420-2.
3
Expression of cellobiose dehydrogenase gene in C112 and its effect on lignocellulose degrading enzymes.
Front Microbiol. 2024 Mar 18;15:1330079. doi: 10.3389/fmicb.2024.1330079. eCollection 2024.
4
Heterologous protein production in filamentous fungi.
Appl Microbiol Biotechnol. 2023 Aug;107(16):5019-5033. doi: 10.1007/s00253-023-12660-8. Epub 2023 Jul 5.
5
Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer.
ACS Catal. 2023 Jun 5;13(12):8195-8205. doi: 10.1021/acscatal.3c02116. eCollection 2023 Jun 16.
8
9
Efficient Constitutive Expression of Cellulolytic Enzymes in for Improved Efficiency of Lignocellulose Degradation.
J Microbiol Biotechnol. 2021 May 28;31(5):740-746. doi: 10.4014/jmb.2101.01003.
10
Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies.
Microorganisms. 2021 Feb 17;9(2):412. doi: 10.3390/microorganisms9020412.

本文引用的文献

1
Comparative thermal inactivation analysis of Aspergillus oryzae and Thiellavia terrestris cutinase: Role of glycosylation.
Biotechnol Bioeng. 2017 Jan;114(1):63-73. doi: 10.1002/bit.26052. Epub 2016 Sep 21.
2
Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei.
Front Microbiol. 2016 Apr 29;7:620. doi: 10.3389/fmicb.2016.00620. eCollection 2016.
3
AA9 and AA10: from enigmatic to essential enzymes.
Appl Microbiol Biotechnol. 2016 Jan;100(1):9-16. doi: 10.1007/s00253-015-7040-0.
4
Lytic Polysaccharide Monooxygenases in Biomass Conversion.
Trends Biotechnol. 2015 Dec;33(12):747-761. doi: 10.1016/j.tibtech.2015.09.006. Epub 2015 Oct 21.
6
Cellulose degradation by polysaccharide monooxygenases.
Annu Rev Biochem. 2015;84:923-46. doi: 10.1146/annurev-biochem-060614-034439. Epub 2015 Mar 12.
7
Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.
PLoS One. 2014 Nov 13;9(11):e112751. doi: 10.1371/journal.pone.0112751. eCollection 2014.
9
Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor.
J Diabetes Sci Technol. 2013 May 1;7(3):669-77. doi: 10.1177/193229681300700312.
10
How to achieve high-level expression of microbial enzymes: strategies and perspectives.
Bioengineered. 2013 Jul-Aug;4(4):212-23. doi: 10.4161/bioe.24761. Epub 2013 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验