School of Mathematics, Shandong University, Jinan 250100, China.
School of Mathematics and Statistics, Shandong University, Weihai 264200, China.
Sensors (Basel). 2023 Feb 26;23(5):2591. doi: 10.3390/s23052591.
Cardiac and respiratory diseases are the primary causes of health problems. If we can automate anomalous heart and lung sound diagnosis, we can improve the early detection of disease and enable the screening of a wider population than possible with manual screening. We propose a lightweight yet powerful model for simultaneous lung and heart sound diagnosis, which is deployable in an embedded low-cost device and is valuable in remote areas or developing countries where Internet access may not be available. We trained and tested the proposed model with the ICBHI and the Yaseen datasets. The experimental results showed that our 11-class prediction model could achieve 99.94% accuracy, 99.84% precision, 99.89% specificity, 99.66% sensitivity, and 99.72% F1 score. We designed a digital stethoscope (around USD 5) and connected it to a low-cost, single-board-computer Raspberry Pi Zero 2W (around USD 20), on which our pretrained model can be smoothly run. This AI-empowered digital stethoscope is beneficial for anyone in the medical field, as it can automatically provide diagnostic results and produce digital audio records for further analysis.
心脏和呼吸疾病是健康问题的主要原因。如果我们能够实现异常心肺音的自动诊断,就可以提高疾病的早期检测能力,并使更多人能够接受筛查,而不仅仅是通过手动筛查。我们提出了一种用于心肺音同时诊断的轻量级但功能强大的模型,该模型可以部署在嵌入式低成本设备中,对于那些可能无法上网的偏远地区或发展中国家来说非常有价值。我们使用 ICBHI 和 Yaseen 数据集对提出的模型进行了训练和测试。实验结果表明,我们的 11 类预测模型可以达到 99.94%的准确率、99.84%的精度、99.89%的特异性、99.66%的灵敏度和 99.72%的 F1 分数。我们设计了一个数字听诊器(约 5 美元),并将其连接到低成本的单板计算机 Raspberry Pi Zero 2W(约 20 美元)上,我们的预训练模型可以在该计算机上顺利运行。这款人工智能赋能的数字听诊器对医疗领域的任何人都有益处,因为它可以自动提供诊断结果,并生成数字音频记录以进行进一步分析。