Department of Biology, The University of New Mexico, Albuquerque, NM, 87104, USA.
Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
Plant Cell Environ. 2017 Aug;40(8):1256-1262. doi: 10.1111/pce.12911. Epub 2017 Mar 1.
Phenotyping for photosynthetic gas exchange parameters is limiting our ability to select plants for enhanced photosynthetic carbon gain and to assess plant function in current and future natural environments. This is due, in part, to the time required to generate estimates of the maximum rate of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) carboxylation (V ) and the maximal rate of electron transport (J ) from the response of photosynthesis (A) to the CO concentration inside leaf air spaces (C ). To relieve this bottleneck, we developed a method for rapid photosynthetic carbon assimilation CO responses [rapid A-C response (RACiR)] utilizing non-steady-state measurements of gas exchange. Using high temporal resolution measurements under rapidly changing CO concentrations, we show that RACiR techniques can obtain measures of V and J in ~5 min, and possibly even faster. This is a small fraction of the time required for even the most advanced gas exchange instrumentation. The RACiR technique, owing to its increased throughput, will allow for more rapid screening of crops, mutants and populations of plants in natural environments, bringing gas exchange into the phenomic era.
对光合气体交换参数进行表型分析限制了我们选择具有增强光合作用碳增益能力的植物的能力,并限制了我们评估当前和未来自然环境中植物功能的能力。这在一定程度上是由于从光合作用 (A) 对叶腔空气 (C) 中 CO 浓度的响应中生成核酮糖-1,5-二磷酸羧化酶加氧酶 (Rubisco) 羧化 (V) 和最大电子传递速率 (J) 的估计值所需的时间。为了缓解这一瓶颈,我们开发了一种快速光合碳同化 CO 响应的方法[快速 A-C 响应 (RACiR)],利用非稳态气体交换测量。使用快速变化的 CO 浓度下的高时间分辨率测量,我们表明 RACiR 技术可以在大约 5 分钟内获得 V 和 J 的测量值,甚至可能更快。这只是最先进的气体交换仪器所需时间的一小部分。由于 RACiR 技术具有更高的通量,它将允许在自然环境中对作物、突变体和植物群体进行更快速的筛选,使气体交换进入表型时代。