Suppr超能文献

利用流动诱导自组装实现胶体裂纹形成。

Harnessing Colloidal Crack Formation by Flow-Enabled Self-Assembly.

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.

出版信息

Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4554-4559. doi: 10.1002/anie.201700457. Epub 2017 Mar 2.

Abstract

Self-assembly of nanomaterials to yield a wide diversity of high-order structures, materials, and devices promises new opportunities for various technological applications. Herein, we report that crack formation can be effectively harnessed by elaborately restricting the drying of colloidal suspension using a flow-enabled self-assembly (FESA) strategy to yield large-area periodic cracks (i.e., microchannels) with tunable spacing. These uniform microchannels can be utilized as a template to guide the assembly of Au nanoparticles, forming intriguing nanoparticle threads. This strategy is simple and convenient. As such, it opens the possibility for large-scale manufacturing of crack-based or crack-derived assemblies and materials for use in optics, electronics, optoelectronics, photonics, magnetic device, nanotechnology, and biotechnology.

摘要

纳米材料的自组装产生了多种多样的高级结构、材料和器件,为各种技术应用带来了新的机遇。在此,我们报告称,可以通过精心限制胶体悬浮液的干燥,利用流动辅助自组装(FESA)策略有效地利用裂纹的形成,从而获得具有可调间距的大面积周期性裂纹(即微通道)。这些均匀的微通道可用作模板来引导 Au 纳米粒子的组装,形成有趣的纳米粒子线。该策略简单方便。因此,它为基于裂纹或由裂纹衍生的组件和材料的大规模制造开辟了可能性,这些组件和材料可用于光学、电子、光电、光子学、磁设备、纳米技术和生物技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验