School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4554-4559. doi: 10.1002/anie.201700457. Epub 2017 Mar 2.
Self-assembly of nanomaterials to yield a wide diversity of high-order structures, materials, and devices promises new opportunities for various technological applications. Herein, we report that crack formation can be effectively harnessed by elaborately restricting the drying of colloidal suspension using a flow-enabled self-assembly (FESA) strategy to yield large-area periodic cracks (i.e., microchannels) with tunable spacing. These uniform microchannels can be utilized as a template to guide the assembly of Au nanoparticles, forming intriguing nanoparticle threads. This strategy is simple and convenient. As such, it opens the possibility for large-scale manufacturing of crack-based or crack-derived assemblies and materials for use in optics, electronics, optoelectronics, photonics, magnetic device, nanotechnology, and biotechnology.
纳米材料的自组装产生了多种多样的高级结构、材料和器件,为各种技术应用带来了新的机遇。在此,我们报告称,可以通过精心限制胶体悬浮液的干燥,利用流动辅助自组装(FESA)策略有效地利用裂纹的形成,从而获得具有可调间距的大面积周期性裂纹(即微通道)。这些均匀的微通道可用作模板来引导 Au 纳米粒子的组装,形成有趣的纳米粒子线。该策略简单方便。因此,它为基于裂纹或由裂纹衍生的组件和材料的大规模制造开辟了可能性,这些组件和材料可用于光学、电子、光电、光子学、磁设备、纳米技术和生物技术。