School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Nat Commun. 2017 Jul 7;8:16045. doi: 10.1038/ncomms16045.
Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.
控制卤化金属钙钛矿薄膜的形貌和结晶度对于实现高性能光电至关重要。然而,由于在油墨的动态流动中半导体材料的复杂结晶动力学,对于溶液打印器件来说,这仍然是一个特别具有挑战性的问题。在这里,我们报告了一种简单而有效的界面辅助溶液印刷(MASP)策略,可获得具有良好结晶和择优取向的大晶粒致密钙钛矿薄膜。有趣的是,在界面油墨的边缘处,快速溶剂蒸发引发的向外对流流动赋予了钙钛矿溶质的输运,从而促进了微米级钙钛矿晶粒的生长。通过原位光学显微镜跟踪来仔细研究钙钛矿晶体的生长动力学,以了解结晶机制。通过 MASP 制备的钙钛矿薄膜在平面钙钛矿太阳能电池中表现出优异的光电性能,效率接近 20%。这种稳健的 MASP 策略原则上可以很容易地扩展到其他溶液印刷的钙钛矿基光电子器件。