Suppr超能文献

基于卷积神经网络的三维医学图像中解剖结构的定位。

ConvNet-Based Localization of Anatomical Structures in 3-D Medical Images.

出版信息

IEEE Trans Med Imaging. 2017 Jul;36(7):1470-1481. doi: 10.1109/TMI.2017.2673121. Epub 2017 Feb 23.

Abstract

Localization of anatomical structures is a prerequisite for many tasks in a medical image analysis. We propose a method for automatic localization of one or more anatomical structures in 3-D medical images through detection of their presence in 2-D image slices using a convolutional neural network (ConvNet). A single ConvNet is trained to detect the presence of the anatomical structure of interest in axial, coronal, and sagittal slices extracted from a 3-D image. To allow the ConvNet to analyze slices of different sizes, spatial pyramid pooling is applied. After detection, 3-D bounding boxes are created by combining the output of the ConvNet in all slices. In the experiments, 200 chest CT, 100 cardiac CT angiography (CTA), and 100 abdomen CT scans were used. The heart, ascending aorta, aortic arch, and descending aorta were localized in chest CT scans, the left cardiac ventricle in cardiac CTA scans, and the liver in abdomen CT scans. Localization was evaluated using the distances between automatically and manually defined reference bounding box centroids and walls. The best results were achieved in the localization of structures with clearly defined boundaries (e.g., aortic arch) and the worst when the structure boundary was not clearly visible (e.g., liver). The method was more robust and accurate in localization multiple structures.

摘要

解剖结构的定位是医学图像分析中许多任务的前提。我们提出了一种通过使用卷积神经网络(ConvNet)在 2-D 图像切片中检测感兴趣的解剖结构的存在来自动定位 3-D 医学图像中一个或多个解剖结构的方法。单个 ConvNet 经过训练可用于检测从 3-D 图像中提取的轴向、冠状和矢状切片中感兴趣的解剖结构的存在。为了允许 ConvNet 分析大小不同的切片,应用了空间金字塔池化。检测后,通过合并 ConvNet 在所有切片中的输出来创建 3-D 边界框。在实验中,使用了 200 例胸部 CT、100 例心脏 CT 血管造影(CTA)和 100 例腹部 CT 扫描。在胸部 CT 扫描中定位心脏、升主动脉、主动脉弓和降主动脉,在心脏 CTA 扫描中定位左心室,在腹部 CT 扫描中定位肝脏。使用自动和手动定义的参考边界框质心和壁之间的距离来评估定位。在具有明确边界的结构(例如主动脉弓)的定位中取得了最佳结果,而在结构边界不明显(例如肝脏)的定位中效果最差。该方法在定位多个结构时更稳健和准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验