Suppr超能文献

深度学习在医学图像自动定位中的应用。

Deep Learning Approaches for Automatic Localization in Medical Images.

机构信息

Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.

Department of Electrical Engineering, University of Sharjah, Sharjah P.O. Box 27272, UAE.

出版信息

Comput Intell Neurosci. 2022 Jun 29;2022:6347307. doi: 10.1155/2022/6347307. eCollection 2022.

Abstract

Recent revolutionary advances in deep learning (DL) have fueled several breakthrough achievements in various complicated computer vision tasks. The remarkable successes and achievements started in 2012 when deep learning neural networks (DNNs) outperformed the shallow machine learning models on a number of significant benchmarks. Significant advances were made in computer vision by conducting very complex image interpretation tasks with outstanding accuracy. These achievements have shown great promise in a wide variety of fields, especially in medical image analysis by creating opportunities to diagnose and treat diseases earlier. In recent years, the application of the DNN for object localization has gained the attention of researchers due to its success over conventional methods, especially in object localization. As this has become a very broad and rapidly growing field, this study presents a short review of DNN implementation for medical images and validates its efficacy on benchmarks. This study presents the first review that focuses on object localization using the DNN in medical images. The key aim of this study was to summarize the recent studies based on the DNN for medical image localization and to highlight the research gaps that can provide worthwhile ideas to shape future research related to object localization tasks. It starts with an overview on the importance of medical image analysis and existing technology in this space. The discussion then proceeds to the dominant DNN utilized in the current literature. Finally, we conclude by discussing the challenges associated with the application of the DNN for medical image localization which can drive further studies in identifying potential future developments in the relevant field of study.

摘要

深度学习(DL)的最新革命进步推动了各种复杂计算机视觉任务的突破成就。2012 年,深度学习神经网络(DNN)在许多重要基准上超越了浅层机器学习模型,取得了显著的成功和成就。通过进行非常复杂的图像解释任务并取得出色的准确性,计算机视觉取得了重大进展。这些成就为各种领域展示了巨大的潜力,特别是在通过更早地诊断和治疗疾病来进行医学图像分析方面。近年来,由于在传统方法上的成功,DNN 在目标定位方面的应用引起了研究人员的关注,特别是在目标定位方面。由于这已经成为一个非常广泛且快速发展的领域,本研究对 DNN 在医学图像中的应用进行了简短的回顾,并在基准上验证了其功效。本研究是第一篇专注于使用 DNN 进行医学图像目标定位的综述。本研究的主要目的是总结基于 DNN 进行医学图像定位的最新研究,并强调可以为未来与目标定位任务相关的研究提供有价值思路的研究空白。它首先概述了医学图像分析和现有技术在该领域的重要性。然后,讨论转向当前文献中使用的主导 DNN。最后,我们通过讨论将 DNN 应用于医学图像定位所面临的挑战来结束,这可以推动进一步的研究,以确定相关研究领域的潜在未来发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4a/9259335/f6cf9a370047/CIN2022-6347307.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验