Suppr超能文献

2015 - 2016年厄尔尼诺现象下孟加拉国达卡的霍乱预测:经验教训

Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El Niño: Lessons learned.

作者信息

Martinez Pamela P, Reiner Robert C, Cash Benjamin A, Rodó Xavier, Shahjahan Mondal Mohammad, Roy Manojit, Yunus Mohammad, Faruque A S G, Huq Sayeeda, King Aaron A, Pascual Mercedes

机构信息

Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America.

Department of Epidemiology and Biostatistics, Indiana University Bloomington School of Public Health, Bloomington, Indiana, United States of America.

出版信息

PLoS One. 2017 Mar 2;12(3):e0172355. doi: 10.1371/journal.pone.0172355. eCollection 2017.

Abstract

A substantial body of work supports a teleconnection between the El Niño-Southern Oscillation (ENSO) and cholera incidence in Bangladesh. In particular, high positive anomalies during the winter (Dec-Feb) in sea surface temperatures (SST) in the tropical Pacific have been shown to exacerbate the seasonal outbreak of cholera following the monsoons from August to November. Climate studies have indicated a role of regional precipitation over Bangladesh in mediating this long-distance effect. Motivated by this previous evidence, we took advantage of the strong 2015-2016 El Niño event to evaluate the predictability of cholera dynamics for the city in recent times based on two transmission models that incorporate SST anomalies and are fitted to the earlier surveillance records starting in 1995. We implemented a mechanistic temporal model that incorporates both epidemiological processes and the effect of ENSO, as well as a previously published statistical model that resolves space at the level of districts (thanas). Prediction accuracy was evaluated with "out-of-fit" data from the same surveillance efforts (post 2008 and 2010 for the two models respectively), by comparing the total number of cholera cases observed for the season to those predicted by model simulations eight to twelve months ahead, starting in January each year. Although forecasts were accurate for the low cholera risk observed for the years preceding the 2015-2016 El Niño, the models also predicted a high probability of observing a large outbreak in fall 2016. Observed cholera cases up to Oct 2016 did not show evidence of an anomalous season. We discuss these predictions in the context of regional and local climate conditions, which show that despite positive regional rainfall anomalies, rainfall and inundation in Dhaka remained low. Possible explanations for these patterns are given together with future implications for cholera dynamics and directions to improve their prediction for the city.

摘要

大量研究工作支持厄尔尼诺-南方涛动(ENSO)与孟加拉国霍乱发病率之间存在遥相关。特别是,热带太平洋冬季(12月至2月)海表温度(SST)出现高正异常,已被证明会加剧8月至11月季风过后霍乱的季节性暴发。气候研究表明,孟加拉国的区域降水在调节这种远距离影响中发挥了作用。基于此前的这些证据,我们利用2015 - 2016年强烈的厄尔尼诺事件,通过两个纳入SST异常并根据1995年开始的早期监测记录进行拟合的传播模型,评估近期该市霍乱动态的可预测性。我们实施了一个机制性时间模型,该模型纳入了流行病学过程和ENSO的影响,以及一个先前发表的统计模型,该模型在地区(县)层面解析空间。通过比较每年1月开始的8至12个月前模型模拟预测的霍乱病例总数与同一监测工作(两个模型分别为2008年后和2010年后)中观察到的霍乱病例总数,用“拟合外”数据评估预测准确性。尽管对于2015 - 2016年厄尔尼诺之前几年观察到的低霍乱风险预测准确,但模型也预测2016年秋季出现大规模暴发的可能性很高。截至2016年10月观察到的霍乱病例没有显示出异常季节的迹象。我们在区域和当地气候条件的背景下讨论这些预测,结果表明,尽管区域降雨出现正异常,但达卡的降雨和洪水仍然较少。针对这些模式给出了可能的解释,以及对霍乱动态的未来影响和改进该市霍乱预测的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf9f/5333828/640ef83a7c39/pone.0172355.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验