Suppr超能文献

基于磁共振成像的前交叉韧带损伤半自动检测

Semi-automated detection of anterior cruciate ligament injury from MRI.

作者信息

Štajduhar Ivan, Mamula Mihaela, Miletić Damir, Ünal Gözde

机构信息

Faculty of Engineering, University of Rijeka, Vukovarska 58, Rijeka, Croatia; Faculty of Engineering and Natural Sciences, Sabanci University, Üniversite Cd. No:27, Tuzla, Istanbul, Turkey.

Clinical Hospital Centre Rijeka, University of Rijeka, Krešimirova 42, Rijeka, Croatia.

出版信息

Comput Methods Programs Biomed. 2017 Mar;140:151-164. doi: 10.1016/j.cmpb.2016.12.006. Epub 2016 Dec 15.

Abstract

BACKGROUND AND OBJECTIVES

A radiologist's work in detecting various injuries or pathologies from radiological scans can be tiresome, time consuming and prone to errors. The field of computer-aided diagnosis aims to reduce these factors by introducing a level of automation in the process. In this paper, we deal with the problem of detecting the presence of anterior cruciate ligament (ACL) injury in a human knee. We examine the possibility of aiding the diagnosis process by building a decision-support model for detecting the presence of milder ACL injuries (not requiring operative treatment) and complete ACL ruptures (requiring operative treatment) from sagittal plane magnetic resonance (MR) volumes of human knees.

METHODS

Histogram of oriented gradient (HOG) descriptors and gist descriptors are extracted from manually selected rectangular regions of interest enveloping the wider cruciate ligament area. Performance of two machine-learning models is explored, coupled with both feature extraction methods: support vector machine (SVM) and random forests model. Model generalisation properties were determined by performing multiple iterations of stratified 10-fold cross validation whilst observing the area under the curve (AUC) score.

RESULTS

Sagittal plane knee joint MR data was retrospectively gathered at the Clinical Hospital Centre Rijeka, Croatia, from 2007 until 2014. Type of ACL injury was established in a double-blind fashion by comparing the retrospectively set diagnosis against the prospective opinion of another radiologist. After clean up, the resulting dataset consisted of 917 usable labelled exam sequences of left or right knees. Experimental results suggest that a linear-kernel SVM learned from HOG descriptors has the best generalisation properties among the experimental models compared, having an area under the curve of 0.894 for the injury-detection problem and 0.943 for the complete-rupture-detection problem.

CONCLUSIONS

Although the problem of performing semi-automated ACL-injury diagnosis by observing knee-joint MR volumes alone is a difficult one, experimental results suggest potential clinical application of computer-aided decision making, both for detecting milder injuries and detecting complete ruptures.

摘要

背景与目的

放射科医生从放射扫描中检测各种损伤或病变的工作可能既繁琐又耗时,还容易出错。计算机辅助诊断领域旨在通过在这个过程中引入一定程度的自动化来减少这些因素。在本文中,我们探讨了检测人类膝关节前交叉韧带(ACL)损伤的问题。我们研究了通过构建一个决策支持模型来辅助诊断过程的可能性,该模型用于从人类膝关节矢状面磁共振(MR)图像中检测较轻的ACL损伤(不需要手术治疗)和完全ACL断裂(需要手术治疗)。

方法

从手动选择的围绕较宽交叉韧带区域的矩形感兴趣区域中提取方向梯度直方图(HOG)描述符和主旨描述符。探索了两种机器学习模型与这两种特征提取方法相结合的性能:支持向量机(SVM)和随机森林模型。通过进行分层10折交叉验证的多次迭代,同时观察曲线下面积(AUC)分数来确定模型的泛化特性。

结果

2007年至2014年期间,在克罗地亚里耶卡临床医院中心回顾性收集了矢状面膝关节MR数据。通过将回顾性设定的诊断与另一位放射科医生的前瞻性意见进行比较,以双盲方式确定ACL损伤的类型。清理后,所得数据集由917个可用的标记检查序列组成,包括左膝或右膝。实验结果表明,从HOG描述符学习的线性核SVM在比较的实验模型中具有最佳的泛化特性,对于损伤检测问题,曲线下面积为0.894,对于完全断裂检测问题,曲线下面积为0.943。

结论

尽管仅通过观察膝关节MR图像来进行半自动ACL损伤诊断是一个难题,但实验结果表明计算机辅助决策在检测较轻损伤和完全断裂方面具有潜在的临床应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验