Suppr超能文献

深度学习辅助膝关节磁共振成像中前交叉韧带撕裂的自动诊断。

Deep Learning-Assisted Automatic Diagnosis of Anterior Cruciate Ligament Tear in Knee Magnetic Resonance Images.

机构信息

Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.

Zhejiang Lab, Hangzhou 310000, China.

出版信息

Tomography. 2024 Aug 13;10(8):1263-1276. doi: 10.3390/tomography10080094.

Abstract

Anterior cruciate ligament (ACL) tears are prevalent knee injures, particularly among active individuals. Accurate and timely diagnosis is essential for determining the optimal treatment strategy and assessing patient prognosis. Various previous studies have demonstrated the successful application of deep learning techniques in the field of medical image analysis. This study aimed to develop a deep learning model for detecting ACL tears in knee magnetic resonance Imaging (MRI) to enhance diagnostic accuracy and efficiency. The proposed model consists of three main modules: a Dual-Scale Data Augmentation module (DDA) to enrich the training data on both the spatial and layer scales; a selective group attention module (SG) to capture relationships across the layer, channel, and space scales; and a fusion module to explore the inter-relationships among various perspectives to achieve the final classification. To ensure a fair comparison, the study utilized a public dataset from MRNet, comprising knee MRI scans from 1250 exams, with a focus on three distinct views: axial, coronal, and sagittal. The experimental results demonstrate the superior performance of the proposed model, termed SGNET, in ACL tear detection compared with other comparison models, achieving an accuracy of 0.9250, a sensitivity of 0.9259, a specificity of 0.9242, and an AUC of 0.9747.

摘要

前交叉韧带(ACL)撕裂是常见的膝关节损伤,尤其是在活跃人群中。准确和及时的诊断对于确定最佳治疗策略和评估患者预后至关重要。先前的各种研究已经证明了深度学习技术在医学图像分析领域的成功应用。本研究旨在开发一种用于检测膝关节磁共振成像(MRI)中 ACL 撕裂的深度学习模型,以提高诊断准确性和效率。所提出的模型由三个主要模块组成:双尺度数据增强模块(DDA),用于丰富空间和层尺度上的训练数据;选择性分组注意模块(SG),用于捕获层、通道和空间尺度之间的关系;以及融合模块,用于探索各种视角之间的相互关系,以实现最终分类。为了确保公平比较,该研究利用了来自 MRNet 的公共数据集,其中包含 1250 次检查的膝关节 MRI 扫描,重点关注三个不同的视图:轴向、冠状和矢状。实验结果表明,所提出的模型(称为 SGNET)在 ACL 撕裂检测方面的性能优于其他比较模型,其准确率为 0.9250,灵敏度为 0.9259,特异性为 0.9242,AUC 为 0.9747。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9090/11487377/71af406144f8/tomography-10-00094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验