Suppr超能文献

基于人工神经网络的肺部综合征识别中的空中分离与接收器排列。

Aerial Separation and Receiver Arrangements on Identifying Lung Syndromes Using the Artificial Neural Network.

机构信息

Department of Electronics and Communication Engineering, Panimalar Engineering College, Poonamallee, Chennai, India.

Department of Computer Science and Engineering, SVKM's NMIMS MPSTME Shirpur Campus, Dhule, India.

出版信息

Comput Intell Neurosci. 2022 Aug 23;2022:7298903. doi: 10.1155/2022/7298903. eCollection 2022.

Abstract

Lung disease is one of the most harmful diseases in traditional days and is the same nowadays. Early detection is one of the most crucial ways to prevent a human from developing these types of diseases. Many researchers are involved in finding various techniques for predicting the accuracy of the diseases. On the basis of the machine learning algorithm, it was not possible to predict the better accuracy when compared to the deep learning technique; this work has proposed enhanced artificial neural network approaches for the accuracy of lung diseases. Here, the discrete Fourier transform and the Burg auto-regression techniques are used for extracting the computed tomography (CT) scan images, and feature reduction takes place by using principle component analysis (PCA). This proposed work has used the 120 subjective datasets from public landmarks with and without lung diseases. The given dataset is trained by using an enhanced artificial neural network (ANN). The preprocessing techniques are handled by using a Gaussian filter; thus, our proposed approach provides enhanced classification accuracy. Finally, our proposed method is compared with the existing machine learning approach based on its accuracy.

摘要

肺部疾病是传统意义上最具危害性的疾病之一,如今依然如此。早期发现是预防人类患上此类疾病的最重要方法之一。许多研究人员都在致力于寻找各种技术来提高疾病预测的准确性。基于机器学习算法,与深度学习技术相比,其预测准确性无法得到提升。因此,本研究提出了增强型人工神经网络方法,以提高肺部疾病的准确性。这里,使用离散傅里叶变换和 Burg 自回归技术来提取计算机断层扫描(CT)图像,并使用主成分分析(PCA)进行特征降维。本研究使用了来自公共地标数据集的 120 个带和不带肺部疾病的主观数据集。使用增强型人工神经网络(ANN)对给定数据集进行训练。通过使用高斯滤波器进行预处理技术,从而提高分类准确性。最后,通过准确性对我们提出的方法与现有的机器学习方法进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86ec/9427225/8831658ff83b/CIN2022-7298903.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验