Suppr超能文献

使用深度学习对X射线图像中的肩部植入物进行分类。

Classifying shoulder implants in X-ray images using deep learning.

作者信息

Urban Gregor, Porhemmat Saman, Stark Maya, Feeley Brian, Okada Kazunori, Baldi Pierre

机构信息

University of California, Irvine School of Information and Computer Sciences, Irvine, CA, USA.

San Francisco State University, Computer Science Department, San Francisco, CA, USA.

出版信息

Comput Struct Biotechnol J. 2020 Apr 15;18:967-972. doi: 10.1016/j.csbj.2020.04.005. eCollection 2020.

Abstract

Total Shoulder Arthroplasty (TSA) is a type of surgery in which the damaged ball of the shoulder is replaced with a prosthesis. Many years later, this prosthesis may be in need of servicing or replacement. In some situations, such as when the patient has changed his country of residence, the model and the manufacturer of the prosthesis may be unknown to the patient and primary doctor. Correct identification of the implant's model prior to surgery is required for selecting the correct equipment and procedure. We present a novel way to automatically classify shoulder implants in X-ray images. We employ deep learning models and compare their performance to alternative classifiers, such as random forests and gradient boosting. We find that deep convolutional neural networks outperform other classifiers significantly if and only if out-of-domain data such as ImageNet is used to pre-train the models. In a data set containing X-ray images of shoulder implants from 4 manufacturers and 16 different models, deep learning is able to identify the correct manufacturer with an accuracy of approximately 80% in 10-fold cross validation, while other classifiers achieve an accuracy of 56% or less. We believe that this approach will be a useful tool in clinical practice, and is likely applicable to other kinds of prostheses.

摘要

全肩关节置换术(TSA)是一种外科手术,其中受损的肩关节球头被假体替换。许多年后,这种假体可能需要维修或更换。在某些情况下,例如当患者改变了居住国家时,患者和主治医生可能不知道假体的型号和制造商。手术前正确识别植入物的型号对于选择正确的设备和手术程序是必要的。我们提出了一种在X射线图像中自动对肩部植入物进行分类的新方法。我们使用深度学习模型,并将它们的性能与其他分类器(如随机森林和梯度提升)进行比较。我们发现,当且仅当使用诸如ImageNet等域外数据对模型进行预训练时,深度卷积神经网络的性能才会显著优于其他分类器。在一个包含来自4个制造商和16种不同型号的肩部植入物X射线图像的数据集上,深度学习在10折交叉验证中能够以约80%的准确率识别出正确的制造商,而其他分类器的准确率则为56%或更低。我们相信这种方法将成为临床实践中的一个有用工具,并且可能适用于其他类型的假体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1b3/7186366/55084e38ec09/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验