Suppr超能文献

使用谐波分析的潜在变量图形模型选择:在人类连接组计划(HCP)中的应用

Latent Variable Graphical Model Selection using Harmonic Analysis: Applications to the Human Connectome Project (HCP).

作者信息

Kim Won Hwa, Kim Hyunwoo J, Adluru Nagesh, Singh Vikas

机构信息

Dept. of Computer Sciences, University of Wisconsin, Madison, WI, U.S.A.

Waisman Center, Madison, WI, U.S.A.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016 Jun;2016:2443-2451. doi: 10.1109/CVPR.2016.268. Epub 2016 Dec 12.

Abstract

A major goal of imaging studies such as the (ongoing) Human Connectome Project (HCP) is to characterize the structural network map of the human brain and identify its associations with covariates such as genotype, risk factors, and so on that correspond to an individual. But the set of image derived measures and the set of covariates are both large, so we must first estimate a 'parsimonious' set of relations between the measurements. For instance, a Gaussian graphical model will show conditional independences between the random variables, which can then be used to setup specific downstream analyses. But most such data involve a large list of 'latent' variables that remain unobserved, yet affect the 'observed' variables sustantially. Accounting for such latent variables is not directly addressed by standard precision matrix estimation, and is tackled via highly specialized optimization methods. This paper offers a unique harmonic analysis view of this problem. By casting the estimation of the precision matrix in terms of a composition of low-frequency latent variables and high-frequency sparse terms, we show how the problem can be formulated using a new wavelet-type expansion in non-Euclidean spaces. Our formulation poses the estimation problem in the frequency space and shows how it can be solved by a simple sub-gradient scheme. We provide a set of scientific results on ~500 scans from the recently released HCP data where our algorithm recovers highly interpretable and sparse conditional dependencies between brain connectivity pathways and well-known covariates.

摘要

诸如(正在进行的)人类连接体计划(HCP)这样的成像研究的一个主要目标是描绘人类大脑的结构网络图,并确定其与个体对应的协变量(如基因型、风险因素等)之间的关联。但是,从图像中得出的测量指标集和协变量集都很大,因此我们必须首先估计测量值之间一组“简约”的关系。例如,高斯图形模型将显示随机变量之间的条件独立性,然后可用于设置特定的下游分析。但是,大多数此类数据都涉及大量未被观察到的“潜在”变量,这些变量却对“观察到”的变量有实质性影响。标准的精度矩阵估计无法直接解决考虑此类潜在变量的问题,需要通过高度专业化的优化方法来处理。本文提供了关于这个问题的独特调和分析观点。通过将精度矩阵的估计表示为低频潜在变量和高频稀疏项的组合,我们展示了如何使用非欧几里得空间中的一种新的小波型展开来构建该问题。我们的公式在频率空间中提出了估计问题,并展示了如何通过简单的次梯度方案来解决它。我们在最近发布的HCP数据的约500次扫描中提供了一组科学结果,我们的算法在这些结果中恢复了大脑连接通路与知名协变量之间高度可解释且稀疏的条件依赖性。

相似文献

6
The Lifespan Human Connectome Project in Aging: An overview.衰老中的全生命周期人类连接组计划:概述。
Neuroimage. 2019 Jan 15;185:335-348. doi: 10.1016/j.neuroimage.2018.10.009. Epub 2018 Oct 15.

引用本文的文献

1
The Incremental Multiresolution Matrix Factorization Algorithm.增量多分辨率矩阵分解算法
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017 Jul;2017:692-701. doi: 10.1109/CVPR.2017.81.

本文引用的文献

1
Manifold-valued Dirichlet Processes.流形值狄利克雷过程
JMLR Workshop Conf Proc. 2015 Jul;2015:1199-1208.
3
ConnectomeDB--Sharing human brain connectivity data.连接体数据库——共享人类大脑连接数据。
Neuroimage. 2016 Jan 1;124(Pt B):1102-1107. doi: 10.1016/j.neuroimage.2015.04.046. Epub 2015 Apr 29.
8
Data dictionary services in XNAT and the Human Connectome Project.XNAT和人类连接组计划中的数据字典服务。
Front Neuroinform. 2014 Jul 3;8:65. doi: 10.3389/fninf.2014.00065. eCollection 2014.
10
Development of a high angular resolution diffusion imaging human brain template.高角分辨率扩散成像人脑模板的开发。
Neuroimage. 2014 May 1;91:177-86. doi: 10.1016/j.neuroimage.2014.01.009. Epub 2014 Jan 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验