Suppr超能文献

条件图形模型的稀疏估计及其在基因网络中的应用

Sparse Estimation of Conditional Graphical Models With Application to Gene Networks.

作者信息

Li Bing, Chuns Hyonho, Zhao Hongyu

机构信息

Professor of Statistics, The Pennsylvania State University, 326 Thomas Building, University Park, PA 16802.

Assistant Professor of Statistics, Purdue University, 250 N. University Street, West Lafayette, IN 47907.

出版信息

J Am Stat Assoc. 2012 Jan 1;107(497):152-167. doi: 10.1080/01621459.2011.644498.

Abstract

In many applications the graph structure in a network arises from two sources: intrinsic connections and connections due to external effects. We introduce a sparse estimation procedure for graphical models that is capable of isolating the intrinsic connections by removing the external effects. Technically, this is formulated as a graphical model, in which the external effects are modeled as predictors, and the graph is determined by the conditional precision matrix. We introduce two sparse estimators of this matrix using the reproduced kernel Hilbert space combined with lasso and adaptive lasso. We establish the sparsity, variable selection consistency, oracle property, and the asymptotic distributions of the proposed estimators. We also develop their convergence rate when the dimension of the conditional precision matrix goes to infinity. The methods are compared with sparse estimators for unconditional graphical models, and with the constrained maximum likelihood estimate that assumes a known graph structure. The methods are applied to a genetic data set to construct a gene network conditioning on single-nucleotide polymorphisms.

摘要

在许多应用中,网络中的图结构源于两个来源:内在连接和外部效应导致的连接。我们为图形模型引入了一种稀疏估计程序,该程序能够通过消除外部效应来分离内在连接。从技术上讲,这被表述为一个图形模型,其中外部效应被建模为预测变量,并且图由条件精度矩阵确定。我们使用再生核希尔伯特空间结合套索和自适应套索引入了该矩阵的两个稀疏估计器。我们建立了所提出估计器的稀疏性、变量选择一致性、神谕性质和渐近分布。当条件精度矩阵的维度趋于无穷大时,我们还推导了它们的收敛速度。将这些方法与无条件图形模型的稀疏估计器以及假设已知图结构的约束最大似然估计进行了比较。这些方法被应用于一个遗传数据集,以构建基于单核苷酸多态性的基因网络。

相似文献

2
Conditional Functional Graphical Models.条件功能图形模型
J Am Stat Assoc. 2023;118(541):257-271. doi: 10.1080/01621459.2021.1924178. Epub 2021 Jun 22.
3
Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models.联合学习多个稀疏矩阵高斯图模型。
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2606-20. doi: 10.1109/TNNLS.2014.2384201. Epub 2015 Mar 4.
4
High-Dimensional Gaussian Graphical Regression Models with Covariates.具有协变量的高维高斯图形回归模型
J Am Stat Assoc. 2023;118(543):2088-2100. doi: 10.1080/01621459.2022.2034632. Epub 2022 Mar 14.
8
Joint Estimation of Multiple Conditional Gaussian Graphical Models.多个条件高斯图形模型的联合估计
IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):3034-3046. doi: 10.1109/TNNLS.2017.2710090. Epub 2017 Jun 28.

引用本文的文献

1
Sparse kernel sufficient dimension reduction.稀疏核充分降维
J Nonparametr Stat. 2024 Jun 6. doi: 10.1080/10485252.2024.2360551.
6
Conditional Functional Graphical Models.条件功能图形模型
J Am Stat Assoc. 2023;118(541):257-271. doi: 10.1080/01621459.2021.1924178. Epub 2021 Jun 22.

本文引用的文献

1
Joint estimation of multiple graphical models.多个图形模型的联合估计
Biometrika. 2011 Mar;98(1):1-15. doi: 10.1093/biomet/asq060. Epub 2011 Feb 9.
6
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
8
R/qtl: QTL mapping in experimental crosses.R/qtl:实验杂交中的数量性状基因座定位。
Bioinformatics. 2003 May 1;19(7):889-90. doi: 10.1093/bioinformatics/btg112.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验