Suppr超能文献

相似文献

1
Structural basis for the nonlinear mechanics of fibrin networks under compression.
Biomaterials. 2014 Aug;35(25):6739-49. doi: 10.1016/j.biomaterials.2014.04.056. Epub 2014 May 16.
2
Fibrin mechanical properties and their structural origins.
Matrix Biol. 2017 Jul;60-61:110-123. doi: 10.1016/j.matbio.2016.08.003. Epub 2016 Aug 20.
4
Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
Acta Biomater. 2019 Aug;94:514-523. doi: 10.1016/j.actbio.2019.05.068. Epub 2019 May 30.
5
Compression-induced structural and mechanical changes of fibrin-collagen composites.
Matrix Biol. 2017 Jul;60-61:141-156. doi: 10.1016/j.matbio.2016.10.007. Epub 2016 Oct 15.
6
Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
Nature. 2019 Sep;573(7772):96-101. doi: 10.1038/s41586-019-1516-5. Epub 2019 Aug 28.
7
Factor XIII stiffens fibrin clots by causing fiber compaction.
J Thromb Haemost. 2014 Oct;12(10):1687-96. doi: 10.1111/jth.12705. Epub 2014 Sep 18.
8
A constitutive model for the time-dependent, nonlinear stress response of fibrin networks.
Biomech Model Mechanobiol. 2015 Oct;14(5):995-1006. doi: 10.1007/s10237-015-0649-1. Epub 2015 Jan 25.
9
Dynamic remodeling of fiber networks with stiff inclusions under compressive loading.
Acta Biomater. 2023 Jun;163:106-116. doi: 10.1016/j.actbio.2022.09.063. Epub 2022 Sep 29.
10
Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood.
Acta Biomater. 2017 Sep 15;60:275-290. doi: 10.1016/j.actbio.2017.07.011. Epub 2017 Jul 8.

引用本文的文献

1
Hyperelasticity of blood clots: Bridging the gap between microscopic and continuum scales.
J Mech Phys Solids. 2024 Sep;190. doi: 10.1016/j.jmps.2024.105750. Epub 2024 Jun 20.
2
Sequential simulation of regeneration-specific microenvironments using scaffolds loaded with nanoplatelet vesicles enhances bone regeneration.
Bioact Mater. 2025 Apr 26;50:475-493. doi: 10.1016/j.bioactmat.2025.04.018. eCollection 2025 Aug.
3
Exploring effects of platelet contractility on the kinetics, thermodynamics, and mechanisms of fibrin clot contraction.
NPJ Biol Phys Mech. 2025;2(1):6. doi: 10.1038/s44341-025-00011-9. Epub 2025 Feb 24.
4
Poroelasticity and permeability of fibrous polymer networks under compression.
Soft Matter. 2025 Mar 26;21(13):2400-2412. doi: 10.1039/d4sm01223b.
5
Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions.
PLoS Comput Biol. 2024 Jul 1;20(7):e1012238. doi: 10.1371/journal.pcbi.1012238. eCollection 2024 Jul.
6
Mechanics and microstructure of blood plasma clots in shear driven rupture.
Soft Matter. 2024 May 29;20(21):4184-4196. doi: 10.1039/d4sm00042k.
8
Flow affects the structural and mechanical properties of the fibrin network in plasma clots.
J Mater Sci Mater Med. 2024 Jan 29;35(1):8. doi: 10.1007/s10856-024-06775-1.
9
Unexpected softening of a fibrous matrix by contracting inclusions.
Acta Biomater. 2024 Mar 15;177:253-264. doi: 10.1016/j.actbio.2024.01.025. Epub 2024 Jan 23.
10
Clots reveal anomalous elastic behavior of fiber networks.
Sci Adv. 2024 Jan 12;10(2):eadh1265. doi: 10.1126/sciadv.adh1265. Epub 2024 Jan 10.

本文引用的文献

1
Cells actively stiffen fibrin networks by generating contractile stress.
Biophys J. 2013 Nov 19;105(10):2240-51. doi: 10.1016/j.bpj.2013.10.008.
2
Adaptation of fibrous biopolymers to recurring increasing strains.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12164-5. doi: 10.1073/pnas.1310351110. Epub 2013 Jul 10.
3
Strain history dependence of the nonlinear stress response of fibrin and collagen networks.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12197-202. doi: 10.1073/pnas.1222787110. Epub 2013 Jun 10.
4
Dynamic self-stiffening in liquid crystal elastomers.
Nat Commun. 2013;4:1739. doi: 10.1038/ncomms2772.
5
Structure and mechanics of fibrin clots formed under mechanical perturbation.
J Thromb Haemost. 2013 Mar;11(3):557-60. doi: 10.1111/jth.12123.
6
Mechanisms of fibrin polymerization and clinical implications.
Blood. 2013 Mar 7;121(10):1712-9. doi: 10.1182/blood-2012-09-306639. Epub 2013 Jan 10.
7
The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots.
Biophys J. 2012 Sep 5;103(5):1020-7. doi: 10.1016/j.bpj.2012.07.046.
8
Non-affine deformations in polymer hydrogels.
Soft Matter. 2012 Jan 1;8(31):8039-8049. doi: 10.1039/c2sm25364j. Epub 2012 May 11.
9
Determinants of fibrin formation, structure, and function.
Curr Opin Hematol. 2012 Sep;19(5):349-56. doi: 10.1097/MOH.0b013e32835673c2.
10
Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases.
Arterioscler Thromb Vasc Biol. 2011 Dec;31(12):e88-99. doi: 10.1161/ATVBAHA.111.230631. Epub 2011 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验