Suppr超能文献

用于阻抗谱的介电泳辅助微孔加载与卸载

Dielectrophoresis assisted loading and unloading of microwells for impedance spectroscopy.

作者信息

Mansoorifar Amin, Koklu Anil, Sabuncu Ahmet C, Beskok Ali

机构信息

Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA.

出版信息

Electrophoresis. 2017 Jun;38(11):1466-1474. doi: 10.1002/elps.201700020. Epub 2017 Mar 21.

Abstract

Dielectric spectroscopy (DS) is a noninvasive, label-free, fast, and promising technique for measuring dielectric properties of biological cells in real time. We demonstrate a microchip that consists of electro-activated microwell arrays for positive dielectrophoresis assisted cell capture, DS measurements, and negative dielectrophoresis driven cell unloading; thus, providing a high-throughput cell analysis platform. To the best of our knowledge, this is the first microfluidic chip that combines electro-activated microwells and DS to analyze biological cells. Device performance is tested using Saccharomyces cerevisiae (yeast) cells. DEP response of yeast cells is determined by measuring their Clausius-Mossotti factor using biophysical models in parallel plate microelectrode geometry. This information is used to determine the excitation frequency to load and unload wells. Effect of yeast cells on the measured impedance spectrum was examined both experimentally and numerically. Good match between the numerical and experimental results establishes the potential use of the microchip device for extracting subcellular properties of biological cells in a rapid and nonexpensive manner.

摘要

介电谱(DS)是一种用于实时测量生物细胞介电特性的非侵入性、无标记、快速且有前景的技术。我们展示了一种微芯片,它由电激活微孔阵列组成,用于正介电泳辅助细胞捕获、DS测量以及负介电泳驱动的细胞卸载;从而提供了一个高通量细胞分析平台。据我们所知,这是首个将电激活微孔和DS结合用于分析生物细胞的微流控芯片。使用酿酒酵母(酵母)细胞对设备性能进行测试。通过在平行板微电极几何结构中使用生物物理模型测量酵母细胞的克劳修斯 - 莫索蒂因子来确定酵母细胞的介电泳响应。该信息用于确定加载和卸载微孔的激发频率。通过实验和数值方法研究了酵母细胞对测量阻抗谱的影响。数值结果与实验结果的良好匹配确立了该微芯片设备以快速且经济的方式提取生物细胞亚细胞特性的潜在用途。

相似文献

1
Dielectrophoresis assisted loading and unloading of microwells for impedance spectroscopy.
Electrophoresis. 2017 Jun;38(11):1466-1474. doi: 10.1002/elps.201700020. Epub 2017 Mar 21.
2
Isomotive dielectrophoresis for parallel analysis of individual particles.
Electrophoresis. 2017 Jun;38(11):1441-1449. doi: 10.1002/elps.201600517. Epub 2017 Feb 23.
5
Electrical properties characterization of single yeast cells by dielectrophoretic motion and electro-rotation.
Biomed Microdevices. 2021 Feb 6;23(1):11. doi: 10.1007/s10544-021-00550-7.
6
Selecting an electrode structure for cell sorting by differential dielectric affinity.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:6311-4. doi: 10.1109/IEMBS.2007.4353798.
8
Enhancing dielectrophoresis effect through novel electrode geometry.
Biomed Microdevices. 2007 Dec;9(6):823-31. doi: 10.1007/s10544-007-9095-x.
9
Electrical Impedance Measurements of Biological Cells in Response to External Stimuli.
Anal Chem. 2018 Apr 3;90(7):4320-4327. doi: 10.1021/acs.analchem.7b05392. Epub 2018 Feb 14.
10
Dielectrophoresis as a cell characterisation tool.
Methods Mol Biol. 2010;583:183-98. doi: 10.1007/978-1-60327-106-6_8.

引用本文的文献

3
Highly Efficient Capture and Quantification of the Airborne Fungal Pathogen Employing a Nanoelectrode-Activated Microwell Array.
ACS Omega. 2021 Dec 27;7(1):459-468. doi: 10.1021/acsomega.1c04878. eCollection 2022 Jan 11.
4
Dynamically controlled dielectrophoresis using resonant tuning.
Electrophoresis. 2021 May;42(9-10):1079-1092. doi: 10.1002/elps.202000328. Epub 2021 Mar 9.
5
A Multiwell Microfluidic Device for Analyzing and Screening Nonhormonal Contraceptive Agents.
Small. 2019 Jul;15(28):e1901910. doi: 10.1002/smll.201901910. Epub 2019 Jun 4.

本文引用的文献

1
Rough Gold Electrodes for Decreasing Impedance at the Electrolyte/Electrode Interface.
Electrochim Acta. 2016 Jul 1;205:215-225. doi: 10.1016/j.electacta.2016.04.048. Epub 2016 Apr 14.
2
Platinum black electrodeposited thread based electrodes for dielectrophoretic assembly of microparticles.
Biomicrofluidics. 2016 Apr 11;10(3):033101. doi: 10.1063/1.4946015. eCollection 2016 May.
3
Cancer Cell Analyses at the Single Cell-Level Using Electroactive Microwell Array Device.
PLoS One. 2015 Nov 11;10(11):e0139980. doi: 10.1371/journal.pone.0139980. eCollection 2015.
4
Flexible Bioimpedance Sensor for Label-Free Detection of Cell Viability and Biomass.
IEEE Trans Nanobioscience. 2015 Oct;14(7):700-6. doi: 10.1109/TNB.2015.2451594. Epub 2015 Sep 25.
5
6
In silico validation procedure for cell volume fraction estimation through dielectric spectroscopy.
J Biol Phys. 2015 Jun;41(3):223-34. doi: 10.1007/s10867-014-9374-8. Epub 2015 Jan 10.
7
Nanotentacle-structured magnetic particles for efficient capture of circulating tumor cells.
Small. 2015 Apr 24;11(16):1975-82. doi: 10.1002/smll.201402619. Epub 2014 Dec 15.
8
Utilization of graphene electrode in transparent microwell arrays for high throughput cell trapping and lysis.
Biosens Bioelectron. 2014 Nov 15;61:625-30. doi: 10.1016/j.bios.2014.05.067. Epub 2014 Jun 9.
9
Cell pairing using microwell array electrodes based on dielectrophoresis.
Anal Chem. 2014 Jul 15;86(14):6818-22. doi: 10.1021/ac5015996. Epub 2014 Jul 1.
10
Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology.
Biomicrofluidics. 2012 Jul 13;6(3):34103. doi: 10.1063/1.4737121. Print 2012 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验