Suppr超能文献

一项通过协同流体流动增强介电电泳,根据其生物物理特性富集高侵袭性癌症亚群的可行性研究。

A feasibility study for enrichment of highly aggressive cancer subpopulations by their biophysical properties via dielectrophoresis enhanced with synergistic fluid flow.

作者信息

Douglas Temple Anne, Cemazar Jaka, Balani Nikita, Sweeney Daniel C, Schmelz Eva M, Davalos Rafael V

机构信息

Bioelectromechanical Systems Laboratory, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, USA.

Virginia Tech Department of Human Nutrition, Food and Exercise, Blacksburg, VA, USA.

出版信息

Electrophoresis. 2017 Jun;38(11):1507-1514. doi: 10.1002/elps.201600530. Epub 2017 May 8.

Abstract

A common problem with cancer treatment is the development of treatment resistance and tumor recurrence that result from treatments that kill most tumor cells yet leave behind aggressive cells to repopulate. Presented here is a microfluidic device that can be used to isolate tumor subpopulations to optimize treatment selection. Dielectrophoresis (DEP) is a phenomenon where particles are polarized by an electric field and move along the electric field gradient. Different cell subpopulations have different DEP responses depending on their bioelectrical phenotype, which, we hypothesize, correlate with aggressiveness. We have designed a microfluidic device in which a region containing posts locally distorts the electric field created by an AC voltage and forces cells toward the posts through DEP. This force is balanced with a simultaneous drag force from fluid motion that pulls cells away from the posts. We have shown that by adjusting the drag force, cells with aggressive phenotypes are influenced more by the DEP force and trap on posts while others flow through the chip unaffected. Utilizing single-cell trapping via cell-sized posts coupled with a drag-DEP force balance, we show that separation of similar cell subpopulations may be achieved, a result that was previously impossible with DEP alone. Separated subpopulations maintain high viability downstream, and remain in a native state, without fluorescent labeling. These cells can then be cultured to help select a therapy that kills aggressive subpopulations equally or better than the bulk of the tumor, mitigating resistance and recurrence.

摘要

癌症治疗中一个常见的问题是治疗抗性的产生和肿瘤复发,这是由杀死大多数肿瘤细胞但留下侵袭性细胞重新增殖的治疗方法导致的。本文介绍了一种微流控装置,可用于分离肿瘤亚群以优化治疗选择。介电泳(DEP)是一种粒子被电场极化并沿电场梯度移动的现象。不同的细胞亚群根据其生物电表型具有不同的DEP响应,我们假设这种表型与侵袭性相关。我们设计了一种微流控装置,其中包含柱体的区域会局部扭曲由交流电压产生的电场,并通过DEP将细胞推向柱体。该力与流体运动产生的同时拖拽力相平衡,该拖拽力将细胞从柱体拉开。我们已经表明,通过调整拖拽力,具有侵袭性表型的细胞受DEP力的影响更大,并被困在柱体上,而其他细胞则不受影响地流过芯片。利用通过细胞大小的柱体进行单细胞捕获并结合拖拽-DEP力平衡,我们表明可以实现相似细胞亚群的分离,这一结果以前仅靠DEP是无法实现的。分离出的亚群在下游保持高活力,并保持天然状态,无需荧光标记。然后可以培养这些细胞,以帮助选择一种能够同等或更好地杀死侵袭性亚群而非大部分肿瘤的疗法,从而减轻抗性和复发。

相似文献

3
A chip for catching, separating, and transporting bio-particles with dielectrophoresis.
J Ind Microbiol Biotechnol. 2008 Nov;35(11):1551-7. doi: 10.1007/s10295-008-0459-x. Epub 2008 Aug 22.
7
Isomotive dielectrophoresis for parallel analysis of individual particles.用于单个颗粒平行分析的等动力介电泳
Electrophoresis. 2017 Jun;38(11):1441-1449. doi: 10.1002/elps.201600517. Epub 2017 Feb 23.

引用本文的文献

7
Dielectrophoresis: Developments and applications from 2010 to 2020.介电泳:2010 年至 2020 年的发展与应用。
Electrophoresis. 2021 Mar;42(5):539-564. doi: 10.1002/elps.202000156. Epub 2020 Dec 28.

本文引用的文献

3
Early and multiple origins of metastatic lineages within primary tumors.原发性肿瘤内转移谱系的早期和多源性起源。
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2140-5. doi: 10.1073/pnas.1525677113. Epub 2016 Feb 8.
10
Intratumor heterogeneity: evolution through space and time.肿瘤内异质性:时空演变。
Cancer Res. 2012 Oct 1;72(19):4875-82. doi: 10.1158/0008-5472.CAN-12-2217. Epub 2012 Sep 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验