Suppr超能文献

用于确定谁能从治疗中获益最多的荟萃分析方法:愚蠢、妄想还是巧妙的方法?

Meta-analytical methods to identify who benefits most from treatments: daft, deluded, or deft approach?

作者信息

Fisher David J, Carpenter James R, Morris Tim P, Freeman Suzanne C, Tierney Jayne F

机构信息

London Hub for Trials Methodology Research, MRC Clinical Trials Unit, University College London, London, UK

London Hub for Trials Methodology Research, MRC Clinical Trials Unit, University College London, London, UK.

出版信息

BMJ. 2017 Mar 3;356:j573. doi: 10.1136/bmj.j573.

Abstract

Identifying which individuals benefit most from particular treatments or other interventions underpins so-called personalised or stratified medicine. However, single trials are typically underpowered for exploring whether participant characteristics, such as age or disease severity, determine an individual’s response to treatment. A meta-analysis of multiple trials, particularly one where individual participant data (IPD) are available, provides greater power to investigate interactions between participant characteristics (covariates) and treatment effects. We use a published IPD meta-analysis to illustrate three broad approaches used for testing such interactions. Based on another systematic review of recently published IPD meta-analyses, we also show that all three approaches can be applied to aggregate data as well as IPD. We also summarise which methods of analysing and presenting interactions are in current use, and describe their advantages and disadvantages. We recommend that testing for interactions using within-trials information alone (the deft approach) becomes standard practice, alongside graphical presentation that directly visualises this.

摘要

确定哪些个体能从特定治疗或其他干预措施中获益最多,是所谓个性化或分层医学的基础。然而,单一试验通常在探究诸如年龄或疾病严重程度等参与者特征是否决定个体对治疗的反应方面缺乏足够的效力。对多个试验进行的荟萃分析,尤其是可获取个体参与者数据(IPD)的荟萃分析,能提供更强的效力来研究参与者特征(协变量)与治疗效果之间的相互作用。我们使用一项已发表的IPD荟萃分析来阐述用于检验此类相互作用的三种主要方法。基于对最近发表的IPD荟萃分析的另一项系统评价,我们还表明这三种方法均可应用于汇总数据以及IPD。我们还总结了当前使用的分析和呈现相互作用的方法,并描述了它们的优缺点。我们建议仅使用试验内信息进行相互作用检验(即deft方法)成为标准做法,并辅以直接可视化此结果的图形展示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/425a/5421441/24bd4f383d35/fisd034884.f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验