Suppr超能文献

用于临床应用的多能干细胞代谢调控

Manipulation of Pluripotent Stem Cell Metabolism for Clinical Application.

作者信息

Tohyama Shugo, Tanosaki Sho, Someya Shota, Fujita Jun, Fukuda Keiichi

机构信息

Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582 Japan.

Department of Organ Fabrication, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582 Japan.

出版信息

Curr Stem Cell Rep. 2017;3(1):28-34. doi: 10.1007/s40778-017-0073-9. Epub 2017 Feb 13.

Abstract

PURPOSE OF REVIEW

Pluripotent stem cells (PSCs) have the capacity to differentiate into various types of cells, and are promising cell sources for regenerative therapy and drug screening. However, to realize the clinical application of PSCs, a large number of highly qualified target cells must be stably prepared with low cost. To achieve this, great improvements in the reprogramming, differentiation, and elimination of residual PSCs will be necessary. In this review, we summarize the updated knowledge about metabolism in PSCs and its application.

RECENT FINDINGS

Recent studies have shown that PSCs have distinct metabolic profiles compared to differentiated cells. The metabolic profiles of PSCs are indispensable for the maintenance of pluripotency, self-renewal, differentiation capacity, and cell survival.

SUMMARY

Metabolic approaches show improved simplicity, scalability, and lower cost than conventional methods for differentiation and elimination of residual PSCs. Thus, manipulation of PSC metabolism will lead to new technologies to improve their efficiencies.

摘要

综述目的

多能干细胞(PSCs)具有分化为各种类型细胞的能力,是再生治疗和药物筛选中很有前景的细胞来源。然而,要实现PSCs的临床应用,必须以低成本稳定制备大量高质量的靶细胞。为实现这一目标,重编程、分化以及去除残留PSCs方面必须有重大改进。在本综述中,我们总结了关于PSCs代谢及其应用的最新知识。

最新发现

最近的研究表明,与分化细胞相比,PSCs具有独特的代谢特征。PSCs的代谢特征对于维持多能性、自我更新、分化能力和细胞存活是不可或缺的。

总结

与传统的分化和去除残留PSCs的方法相比,代谢方法具有更高的简便性、可扩展性和更低的成本。因此,对PSCs代谢的调控将带来提高其效率的新技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d84/5315714/057d608ce018/40778_2017_73_Fig1_HTML.jpg

相似文献

1
Manipulation of Pluripotent Stem Cell Metabolism for Clinical Application.
Curr Stem Cell Rep. 2017;3(1):28-34. doi: 10.1007/s40778-017-0073-9. Epub 2017 Feb 13.
2
Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming.
Int J Mol Sci. 2019 May 7;20(9):2254. doi: 10.3390/ijms20092254.
3
Metabolic regulation in pluripotent stem cells.
Curr Opin Genet Dev. 2022 Aug;75:101923. doi: 10.1016/j.gde.2022.101923. Epub 2022 Jun 9.
4
Energy Metabolism Regulates Stem Cell Pluripotency.
Front Cell Dev Biol. 2020 Feb 28;8:87. doi: 10.3389/fcell.2020.00087. eCollection 2020.
5
Metabolism in Human Pluripotent Stem Cells and Cardiomyocytes for Regenerative Therapy.
Keio J Med. 2022 Sep 25;71(3):55-61. doi: 10.2302/kjm.2021-0015-IR. Epub 2022 Jan 25.
6
Functions of p53 in pluripotent stem cells.
Protein Cell. 2020 Jan;11(1):71-78. doi: 10.1007/s13238-019-00665-x. Epub 2019 Nov 6.
7
Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility?
Int J Mol Sci. 2021 Oct 11;22(20):10946. doi: 10.3390/ijms222010946.
8
Linking Telomere Regulation to Stem Cell Pluripotency.
Trends Genet. 2017 Jan;33(1):16-33. doi: 10.1016/j.tig.2016.10.007. Epub 2016 Nov 23.
10
The SOX transcription factors as key players in pluripotent stem cells.
Stem Cells Dev. 2014 Nov 15;23(22):2687-99. doi: 10.1089/scd.2014.0297. Epub 2014 Sep 26.

引用本文的文献

1
Epigenomic states contribute to coordinated allelic transcriptional bursting in iPSC reprogramming.
Life Sci Alliance. 2024 Feb 6;7(4). doi: 10.26508/lsa.202302337. Print 2024 Apr.
2
Metabolic rivalry: circadian homeostasis and tumorigenesis.
Nat Rev Cancer. 2020 Nov;20(11):645-661. doi: 10.1038/s41568-020-0291-9. Epub 2020 Sep 7.
3
Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac reprogramming.
Regen Ther. 2019 Jun 27;11:95-100. doi: 10.1016/j.reth.2019.06.004. eCollection 2019 Dec.
4
Combined RNA-seq and RAT-seq mapping of long noncoding RNAs in pluripotent reprogramming.
Sci Data. 2018 Nov 20;5:180255. doi: 10.1038/sdata.2018.255.
5
Direct Cardiac Reprogramming: A Novel Approach for Heart Regeneration.
Int J Mol Sci. 2018 Sep 5;19(9):2629. doi: 10.3390/ijms19092629.

本文引用的文献

1
Psat1-Dependent Fluctuations in α-Ketoglutarate Affect the Timing of ESC Differentiation.
Cell Metab. 2016 Sep 13;24(3):494-501. doi: 10.1016/j.cmet.2016.06.014. Epub 2016 Jul 28.
2
α-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells.
Cell Metab. 2016 Sep 13;24(3):485-493. doi: 10.1016/j.cmet.2016.07.002. Epub 2016 Jul 28.
3
Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4.
Cell Rep. 2016 Jul 12;16(2):323-332. doi: 10.1016/j.celrep.2016.05.089. Epub 2016 Jun 23.
4
H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells.
Stem Cell Reports. 2016 Jun 14;6(6):825-833. doi: 10.1016/j.stemcr.2016.04.015. Epub 2016 May 26.
5
Glutamine Oxidation Is Indispensable for Survival of Human Pluripotent Stem Cells.
Cell Metab. 2016 Apr 12;23(4):663-74. doi: 10.1016/j.cmet.2016.03.001. Epub 2016 Mar 31.
7
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition.
Nat Cell Biol. 2015 Dec;17(12):1523-35. doi: 10.1038/ncb3264. Epub 2015 Nov 16.
8
Elimination of tumorigenic human pluripotent stem cells by a recombinant lectin-toxin fusion protein.
Stem Cell Reports. 2015 May 12;4(5):811-20. doi: 10.1016/j.stemcr.2015.02.016. Epub 2015 Apr 9.
9
ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency.
Cell Stem Cell. 2015 May 7;16(5):547-55. doi: 10.1016/j.stem.2015.03.001. Epub 2015 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验