Suppr超能文献

能量代谢调节干细胞多能性。

Energy Metabolism Regulates Stem Cell Pluripotency.

作者信息

Tsogtbaatar Enkhtuul, Landin Chelsea, Minter-Dykhouse Katherine, Folmes Clifford D L

机构信息

Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States.

出版信息

Front Cell Dev Biol. 2020 Feb 28;8:87. doi: 10.3389/fcell.2020.00087. eCollection 2020.

Abstract

Pluripotent stem cells (PSCs) are characterized by their unique capacity for both unlimited self-renewal and their potential to differentiate to all cell lineages contained within the three primary germ layers. While once considered a distinct cellular state, it is becoming clear that pluripotency is in fact a continuum of cellular states, all capable of self-renewal and differentiation, yet with distinct metabolic, mitochondrial and epigenetic features dependent on gestational stage. In this review we focus on two of the most clearly defined states: "naïve" and "primed" PSCs. Like other rapidly dividing cells, PSCs have a high demand for anabolic precursors necessary to replicate their genome, cytoplasm and organelles, while concurrently consuming energy in the form of ATP. This requirement for both anabolic and catabolic processes sufficient to supply a highly adapted cell cycle in the context of reduced oxygen availability, distinguishes PSCs from their differentiated progeny. During early embryogenesis PSCs adapt their substrate preference to match the bioenergetic requirements of each specific developmental stage. This is reflected in different mitochondrial morphologies, membrane potentials, electron transport chain (ETC) compositions, and utilization of glycolysis. Additionally, metabolites produced in PSCs can directly influence epigenetic and transcriptional programs, which in turn can affect self-renewal characteristics. Thus, our understanding of the role of metabolism in PSC fate has expanded from anabolism and catabolism to include governance of the pluripotent epigenetic landscape. Understanding the roles of metabolism and the factors influencing metabolic pathways in naïve and primed pluripotent states provide a platform for understanding the drivers of cell fate during development. This review highlights the roles of the major metabolic pathways in the acquisition and maintenance of the different states of pluripotency.

摘要

多能干细胞(PSCs)的特点是具有无限自我更新的独特能力,以及分化为三个主要胚层中所有细胞谱系的潜力。虽然多能性曾经被认为是一种独特的细胞状态,但现在越来越清楚的是,多能性实际上是一系列细胞状态的连续体,所有这些状态都能够自我更新和分化,但具有依赖于妊娠阶段的独特代谢、线粒体和表观遗传特征。在这篇综述中,我们重点关注两种最明确界定的状态:“原始态”和“启动态”PSCs。与其他快速分裂的细胞一样,PSCs对复制其基因组、细胞质和细胞器所需的合成代谢前体有很高的需求,同时以ATP的形式消耗能量。在氧气供应减少的情况下,对足以支持高度适应的细胞周期的合成代谢和分解代谢过程的这种需求,将PSCs与其分化后代区分开来。在早期胚胎发育过程中,PSCs会调整其底物偏好,以匹配每个特定发育阶段的生物能量需求。这反映在不同的线粒体形态、膜电位、电子传递链(ETC)组成以及糖酵解的利用上。此外,PSCs中产生的代谢物可以直接影响表观遗传和转录程序,进而影响自我更新特征。因此,我们对代谢在PSCs命运中的作用的理解已经从合成代谢和分解代谢扩展到包括对多能表观遗传格局的调控。了解代谢的作用以及影响原始态和启动态多能状态下代谢途径的因素,为理解发育过程中细胞命运的驱动因素提供了一个平台。这篇综述强调了主要代谢途径在获得和维持不同多能状态中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bae8/7059177/1ccaf1674a60/fcell-08-00087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验