Suppr超能文献

多电极尖峰分类方法的最新进展。

Recent progress in multi-electrode spike sorting methods.

作者信息

Lefebvre Baptiste, Yger Pierre, Marre Olivier

机构信息

Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France; Laboratoire de Physique Statistique, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, 24 rue Lhomond, 75005 Paris, France.

Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.

出版信息

J Physiol Paris. 2016 Nov;110(4 Pt A):327-335. doi: 10.1016/j.jphysparis.2017.02.005. Epub 2017 Mar 2.

Abstract

In recent years, arrays of extracellular electrodes have been developed and manufactured to record simultaneously from hundreds of electrodes packed with a high density. These recordings should allow neuroscientists to reconstruct the individual activity of the neurons spiking in the vicinity of these electrodes, with the help of signal processing algorithms. Algorithms need to solve a source separation problem, also known as spike sorting. However, these new devices challenge the classical way to do spike sorting. Here we review different methods that have been developed to sort spikes from these large-scale recordings. We describe the common properties of these algorithms, as well as their main differences. Finally, we outline the issues that remain to be solved by future spike sorting algorithms.

摘要

近年来,已开发并制造出细胞外电极阵列,用于同时从数百个高密度排列的电极进行记录。借助信号处理算法,这些记录应能让神经科学家重建在这些电极附近产生动作电位的神经元的个体活动。算法需要解决一个源分离问题,也称为峰电位分类。然而,这些新设备对传统的峰电位分类方法提出了挑战。在此,我们回顾为从这些大规模记录中分类峰电位而开发的不同方法。我们描述了这些算法的共同特性及其主要差异。最后,我们概述了未来峰电位分类算法仍有待解决的问题。

相似文献

1
Recent progress in multi-electrode spike sorting methods.
J Physiol Paris. 2016 Nov;110(4 Pt A):327-335. doi: 10.1016/j.jphysparis.2017.02.005. Epub 2017 Mar 2.
3
Scaling Spike Detection and Sorting for Next-Generation Electrophysiology.
Adv Neurobiol. 2019;22:171-184. doi: 10.1007/978-3-030-11135-9_7.
4
How Do Spike Collisions Affect Spike Sorting Performance?
eNeuro. 2022 Oct 3;9(5). doi: 10.1523/ENEURO.0105-22.2022. Print 2022 Sep-Oct.
5
Towards reliable spike-train recordings from thousands of neurons with multielectrodes.
Curr Opin Neurobiol. 2012 Feb;22(1):11-7. doi: 10.1016/j.conb.2011.10.001. Epub 2011 Oct 22.
6
MEArec: A Fast and Customizable Testbench Simulator for Ground-truth Extracellular Spiking Activity.
Neuroinformatics. 2021 Jan;19(1):185-204. doi: 10.1007/s12021-020-09467-7.
7
Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
J Neurophysiol. 2003 Apr;89(4):2245-58. doi: 10.1152/jn.00827.2002. Epub 2002 Dec 18.
8
Signal-to-noise ratio improvement in multiple electrode recording.
J Neurosci Methods. 2002 Mar 30;115(1):29-43. doi: 10.1016/s0165-0270(01)00516-7.
9
Automatic spike sorting for high-density microelectrode arrays.
J Neurophysiol. 2018 Dec 1;120(6):3155-3171. doi: 10.1152/jn.00803.2017. Epub 2018 Sep 12.
10
Spike sorting algorithms and their efficient hardware implementation: a comprehensive survey.
J Neural Eng. 2023 Apr 14;20(2). doi: 10.1088/1741-2552/acc7cc.

引用本文的文献

2
Comparative analysis of spike-sorters in large-scale brainstem recordings.
bioRxiv. 2024 Nov 14:2024.11.11.623089. doi: 10.1101/2024.11.11.623089.
3
A Modular Implementation to Handle and Benchmark Drift Correction for High-Density Extracellular Recordings.
eNeuro. 2024 Feb 26;11(2). doi: 10.1523/ENEURO.0229-23.2023. Print 2024 Feb.
4
A Fast and Effective Spike Sorting Method Based on Multi-Frequency Composite Waveform Shapes.
Brain Sci. 2023 Aug 2;13(8):1156. doi: 10.3390/brainsci13081156.
5
Spike Sorting of Non-Stationary Data in Successive Intervals Based on Dirichlet Process Mixtures.
Cogn Neurodyn. 2022 Dec;16(6):1393-1405. doi: 10.1007/s11571-022-09781-7. Epub 2022 Feb 9.
6
How Do Spike Collisions Affect Spike Sorting Performance?
eNeuro. 2022 Oct 3;9(5). doi: 10.1523/ENEURO.0105-22.2022. Print 2022 Sep-Oct.
7
From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings.
Front Neuroinform. 2022 Jun 13;16:851024. doi: 10.3389/fninf.2022.851024. eCollection 2022.
8
Studying Cardiac Neural Network Dynamics: Challenges and Opportunities for Scientific Computing.
Front Physiol. 2022 Apr 29;13:835761. doi: 10.3389/fphys.2022.835761. eCollection 2022.

本文引用的文献

2
Unsupervised Spike Sorting for Large-Scale, High-Density Multielectrode Arrays.
Cell Rep. 2017 Mar 7;18(10):2521-2532. doi: 10.1016/j.celrep.2017.02.038.
3
Consensus-Based Sorting of Neuronal Spike Waveforms.
PLoS One. 2016 Aug 18;11(8):e0160494. doi: 10.1371/journal.pone.0160494. eCollection 2016.
4
Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.
J Neurosci Methods. 2016 Sep 15;271:1-13. doi: 10.1016/j.jneumeth.2016.06.006. Epub 2016 Jun 15.
5
Validating silicon polytrodes with paired juxtacellular recordings: method and dataset.
J Neurophysiol. 2016 Aug 1;116(2):892-903. doi: 10.1152/jn.00103.2016. Epub 2016 Jun 15.
6
Spike sorting for large, dense electrode arrays.
Nat Neurosci. 2016 Apr;19(4):634-641. doi: 10.1038/nn.4268. Epub 2016 Mar 14.
7
Spike sorting of synchronous spikes from local neuron ensembles.
J Neurophysiol. 2015 Oct;114(4):2535-49. doi: 10.1152/jn.00993.2014. Epub 2015 Aug 19.
8
High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels.
Lab Chip. 2015 Jul 7;15(13):2767-80. doi: 10.1039/c5lc00133a. Epub 2015 May 14.
9
Past, present and future of spike sorting techniques.
Brain Res Bull. 2015 Oct;119(Pt B):106-17. doi: 10.1016/j.brainresbull.2015.04.007. Epub 2015 Apr 27.
10
Bayes optimal template matching for spike sorting - combining fisher discriminant analysis with optimal filtering.
J Comput Neurosci. 2015 Jun;38(3):439-59. doi: 10.1007/s10827-015-0547-7. Epub 2015 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验