Suppr超能文献

尖峰排序算法及其高效硬件实现:全面综述。

Spike sorting algorithms and their efficient hardware implementation: a comprehensive survey.

作者信息

Zhang Tim, Rahimi Azghadi Mostafa, Lammie Corey, Amirsoleimani Amirali, Genov Roman

机构信息

Department of Bioengineering, McGill University, Montreal H3A 0E9, Canada.

College of Science and Engineering, James Cook University, Townsville QLD 4811, Australia.

出版信息

J Neural Eng. 2023 Apr 14;20(2). doi: 10.1088/1741-2552/acc7cc.

Abstract

. Spike sorting is a set of techniques used to analyze extracellular neural recordings, attributing individual spikes to individual neurons. This field has gained significant interest in neuroscience due to advances in implantable microelectrode arrays, capable of recording thousands of neurons simultaneously. High-density electrodes, combined with efficient and accurate spike sorting systems, are essential for various applications, including brain machine interfaces (BMIs), experimental neural prosthetics, real-time neurological disorder monitoring, and neuroscience research. However, given the resource constraints of modern applications, relying solely on algorithmic innovation is not enough. Instead, a co-optimization approach that combines hardware and spike sorting algorithms must be taken to develop neural recording systems suitable for resource-constrained environments, such as wearable devices and BMIs. This co-design requires careful consideration when selecting appropriate spike-sorting algorithms that match specific hardware and use cases.. We investigated the recent literature on spike sorting, both in terms of hardware advancements and algorithms innovations. Moreover, we dedicated special attention to identifying suitable algorithm-hardware combinations, and their respective real-world applicabilities.. In this review, we first examined the current progress in algorithms, and described the recent departure from the conventional '3-step' algorithms in favor of more advanced template matching or machine-learning-based techniques. Next, we explored innovative hardware options, including application-specific integrated circuits, field-programmable gate arrays, and in-memory computing devices (IMCs). Additionally, the challenges and future opportunities for spike sorting are discussed.. This comprehensive review systematically summarizes the latest spike sorting techniques and demonstrates how they enable researchers to overcome traditional obstacles and unlock novel applications. Our goal is for this work to serve as a roadmap for future researchers seeking to identify the most appropriate spike sorting implementations for various experimental settings. By doing so, we aim to facilitate the advancement of this exciting field and promote the development of innovative solutions that drive progress in neural engineering research.

摘要

尖峰排序是一组用于分析细胞外神经记录的技术,将单个尖峰归因于单个神经元。由于可植入微电极阵列的进步,该领域在神经科学中引起了极大兴趣,这种阵列能够同时记录数千个神经元。高密度电极与高效准确的尖峰排序系统相结合,对于包括脑机接口(BMI)、实验性神经假体、实时神经系统疾病监测和神经科学研究在内的各种应用至关重要。然而,考虑到现代应用的资源限制,仅依靠算法创新是不够的。相反,必须采用一种将硬件和尖峰排序算法相结合的协同优化方法,来开发适用于资源受限环境(如可穿戴设备和BMI)的神经记录系统。这种协同设计在选择与特定硬件和用例相匹配的合适尖峰排序算法时需要仔细考虑。我们研究了近期关于尖峰排序的文献,包括硬件进展和算法创新方面。此外,我们特别关注确定合适的算法 - 硬件组合及其各自的实际应用。在本综述中,我们首先研究了算法方面的当前进展,并描述了近期从传统的“三步”算法转向更先进的模板匹配或基于机器学习的技术。接下来,我们探讨了创新的硬件选项,包括专用集成电路、现场可编程门阵列和内存计算设备(IMC)。此外,还讨论了尖峰排序面临的挑战和未来机遇。这篇全面的综述系统地总结了最新的尖峰排序技术,并展示了它们如何使研究人员能够克服传统障碍并开启新的应用。我们的目标是让这项工作成为未来研究人员的路线图,帮助他们为各种实验设置确定最合适的尖峰排序实现方式。通过这样做,我们旨在推动这个令人兴奋的领域的发展,并促进创新解决方案的开发,从而推动神经工程研究的进步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验