Department of Chemical Engineering, Box 351750, University of Washington , Seattle, Washington 98195, United States.
J Am Chem Soc. 2017 Mar 22;139(11):3958-3961. doi: 10.1021/jacs.7b00519. Epub 2017 Mar 13.
Combining bioorthogonal chemistry with the use of proteins engineered with adhesive and morphogenetic solid-binding peptides is a promising route for synthesizing hybrid materials with the economy and efficiency of living systems. Using optical sensing of chloramphenicol as a proof of concept, we show here that a GFP variant engineered with zinc sulfide and silica-binding peptides on opposite sides of its β-barrel supports the fabrication of protein-capped ZnS:Mn nanocrystals that exhibit the combined emission signatures of organic and inorganic fluorophores. Conjugation of a chloramphenicol-specific DNA aptamer to the protein shell through strain-promoted azide-alkyne cycloaddition and spontaneous concentration of the resulting nanostructures onto SiO particles mediated by the silica-binding sequence enables visual detection of environmentally and clinically relevant concentrations of chloramphenicol through analyte-mediated inner filtering of sub-330 nm excitation light.
将生物正交化学与经过黏附性和形态发生固相结合肽工程改造的蛋白质结合使用,是合成具有经济和高效的生命体系的混合材料的一种很有前途的方法。本文以氯霉素的光学传感为概念验证,展示了一种 GFP 变体,其在β桶的相对两侧用硫化锌和二氧化硅结合肽进行工程改造,支持制备具有有机和无机荧光团组合发射特征的蛋白封端的 ZnS:Mn 纳米晶体。通过应变促进的叠氮-炔环加成将氯霉素特异性 DNA 适体连接到蛋白壳上,并通过二氧化硅结合序列自发浓缩到 SiO 颗粒上,从而使通过分析物介导的亚 330nm 激发光的内滤光作用,对环境和临床相关浓度的氯霉素进行可视化检测。