Roose-Amsaleg Céline, Laverman Anniet M
Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France.
Université de Rennes 1, UMR 6553 Ecobio, 35042, Rennes Cedex, France.
Environ Sci Pollut Res Int. 2016 Mar;23(5):4000-12. doi: 10.1007/s11356-015-4943-3. Epub 2015 Jul 8.
Antibiotic use in the early 1900 vastly improved human health but at the same time started an arms race of antibiotic resistance. The widespread use of antibiotics has resulted in ubiquitous trace concentrations of many antibiotics in most environments. Little is known about the impact of these antibiotics on microbial processes or "non-target" organisms. This mini-review summarizes our knowledge of the effect of synthetically produced antibiotics on microorganisms involved in biogeochemical cycling. We found only 31 articles that dealt with the effects of antibiotics on such processes in soil, sediment, or freshwater. We compare the processes, antibiotics, concentration range, source, environment, and experimental approach of these studies. Examining the effects of antibiotics on biogeochemical processes should involve environmentally relevant concentrations (instead of therapeutic), chronic exposure (versus acute), and monitoring of the administered antibiotics. Furthermore, the lack of standardized tests hinders generalizations regarding the effects of antibiotics on biogeochemical processes. We investigated the effects of antibiotics on biogeochemical N cycling, specifically nitrification, denitrification, and anammox. We found that environmentally relevant concentrations of fluoroquinolones and sulfonamides could partially inhibit denitrification. So far, the only documented effects of antibiotic inhibitions were at therapeutic doses on anammox activities. The most studied and inhibited was nitrification (25-100 %) mainly at therapeutic doses and rarely environmentally relevant. We recommend that firm conclusions regarding inhibition of antibiotics at environmentally relevant concentrations remain difficult due to the lack of studies testing low concentrations at chronic exposure. There is thus a need to test the effects of these environmental concentrations on biogeochemical processes to further establish the possible effects on ecosystem functioning.
20世纪初抗生素的使用极大地改善了人类健康,但同时也引发了一场抗生素耐药性的军备竞赛。抗生素的广泛使用导致在大多数环境中普遍存在痕量浓度的多种抗生素。人们对这些抗生素对微生物过程或“非目标”生物的影响知之甚少。本综述总结了我们对合成抗生素对参与生物地球化学循环的微生物影响的认识。我们仅发现31篇文章涉及抗生素对土壤、沉积物或淡水中此类过程的影响。我们比较了这些研究的过程、抗生素、浓度范围、来源、环境和实验方法。研究抗生素对生物地球化学过程的影响应涉及环境相关浓度(而非治疗浓度)、长期暴露(与急性暴露相对)以及对施用抗生素的监测。此外,缺乏标准化测试阻碍了对抗生素对生物地球化学过程影响的概括。我们研究了抗生素对生物地球化学氮循环的影响,特别是硝化作用、反硝化作用和厌氧氨氧化作用。我们发现环境相关浓度的氟喹诺酮类和磺胺类药物可部分抑制反硝化作用。到目前为止,抗生素抑制作用的唯一记录效应是在治疗剂量下对厌氧氨氧化活性的影响。研究最多且受抑制的是硝化作用(25%-100%),主要是在治疗剂量下,很少是在环境相关浓度下。我们建议,由于缺乏在长期暴露下测试低浓度的研究,关于环境相关浓度下抗生素抑制作用的确切结论仍然难以得出。因此,有必要测试这些环境浓度对生物地球化学过程的影响,以进一步确定对生态系统功能的可能影响。