Suppr超能文献

一个嵌入闭环控制系统的具有多重可塑性的尖峰神经网络,用于对小脑病变进行建模。

A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.

机构信息

1 NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy.

2 Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, I-27100 Pavia, Italy.

出版信息

Int J Neural Syst. 2018 Jun;28(5):1750017. doi: 10.1142/S0129065717500174. Epub 2017 Jan 10.

Abstract

The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.

摘要

小脑在感觉运动控制中起着至关重要的作用,小脑障碍会影响运动反应的适应和学习。然而,网络层面的改变与小脑功能障碍之间的联系仍不清楚。原则上,这种理解将受益于开发一个嵌入小脑重要神经元和可塑性特性并能进行闭环运行的人工系统。为此,我们利用小脑的真实尖峰计算模型来分析小脑损伤的网络相关性。该模型经过修改,以再现小脑皮质的三种不同损伤:(i)主要输出神经元(浦肯野细胞)的丧失,(ii)主要小脑传入纤维(苔藓纤维)的损伤,以及(iii)突触可塑性的主要机制(长时程抑郁)的损伤。经过修改的网络模型接受了眼跳经典条件反射测试的挑战,这是一种用于评估小脑损伤的标准学习范式,将结果与人类或动物实验中获得的参考结果进行比较。在所有情况下,该模型都再现了病理学中常见的部分和延迟条件反射,表明完整的小脑皮质功能对于通过将获得的信息转移到小脑核来加速学习是必需的。有趣的是,根据损伤的类型,突触可塑性和反应时间的重新分布差异很大,产生了特定的适应模式。因此,本工作不仅扩展了小脑尖峰模型对病理情况的泛化能力,还预测了神经元层面的变化如何在网络中分布,使其可用于推断小脑病变中发生的小脑回路改变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验