Suppr超能文献

具有分布式可塑性的脉冲神经网络在眨眼条件反射范式中再现小脑学习。

Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms.

作者信息

Antonietti Alberto, Casellato Claudia, Garrido Jesús A, Luque Niceto R, Naveros Francisco, Ros Eduardo, D' Angelo Egidio, Pedrocchi Alessandra

出版信息

IEEE Trans Biomed Eng. 2016 Jan;63(1):210-9. doi: 10.1109/TBME.2015.2485301. Epub 2015 Oct 1.

Abstract

GOAL

In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction.

METHODS

By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level.

RESULTS

First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both "timing" and "amplitude", expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving.

CONCLUSIONS

We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes.

SIGNIFICANCE

This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical applications.

摘要

目标

在本研究中,我们通过使用人工脉冲神经网络定义了一个逼真的小脑模型,并在计算模拟中对其进行测试,该模拟在多次习得和消退过程中再现了联合运动任务。

方法

通过进化算法,我们对小脑微电路进行调整,以找出在眨眼经典条件反射中能更好地再现类人行为的接近最优的可塑性机制参数,眨眼经典条件反射是与小脑相关的研究最广泛的范式之一。我们使用了两种模型:一种仅具有皮质可塑性,另一种在核水平包含两个额外的可塑性位点。

结果

首先,两个脉冲小脑模型在“时间”和“幅度”方面都能够很好地再现真实人类行为,表现出联合运动任务的快速习得、稳定的后期习得、快速消退和更快的重新习得。尽管仅具有皮质可塑性位点的模型显示出良好的学习能力,但具有分布式可塑性的模型在重新习得阶段产生了更快且更稳定的条件反应习得。这种行为可以通过核可塑性的作用来解释,核可塑性具有缓慢的动力学特性,能够表现出记忆巩固和保存。

结论

我们展示了多个相互作用的神经机制的脉冲动力学如何隐含地驱动复杂学习过程的多个基本组成部分。

意义

本研究提出了一个由生物医学工程师、计算机科学家和神经科学家共同开发的非常先进的计算模型。由于其逼真的特性,所提出的模型可以为神经生理学和病理学假设提供证实和建议,并可用于具有挑战性的临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验