Suppr超能文献

阿尔茨海默病脑电图中不典型的特定时间尺度分形变化及其与认知衰退的相关性。

Atypical temporal-scale-specific fractal changes in Alzheimer's disease EEG and their relevance to cognitive decline.

作者信息

Nobukawa Sou, Yamanishi Teruya, Nishimura Haruhiko, Wada Yuji, Kikuchi Mitsuru, Takahashi Tetsuya

机构信息

1Department of Computer Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 Japan.

2Department of Management Information Science, Fukui University of Technology, 3-6-1 Gakuen, Fukui, Fukui 910-8505 Japan.

出版信息

Cogn Neurodyn. 2019 Feb;13(1):1-11. doi: 10.1007/s11571-018-9509-x. Epub 2018 Oct 8.

Abstract

Recent advances in nonlinear analytic methods for electroencephalography have clarified the reduced complexity of spatiotemporal dynamics in brain activity observed in Alzheimer's disease (AD). However, there are far fewer studies exploring temporal scale dependent fractal properties in AD, despite the importance of studying the dynamics of brain activity within physiologically relevant frequency ranges. Higuchi's fractal dimension is a widely used index for evaluating fractality in brain activity, but temporal-scale-specific characteristics are lost due to its requirement of averaging over the entire range of temporal scales. In this study, we adapted Higuchi's fractal algorithm into a method for investigating temporal-scale-specific fractal properties. We then compared the values of the temporal-scale-specific fractal dimension between healthy control (HC) and AD patient groups. Our data indicate that relative to the HC group, the AD group demonstrated reduced fractality at both slow and fast temporal scales. Moreover, we confirmed that the fractality at fast temporal scales correlates with cognitive decline. These properties might serve as a basis for a useful approach to characterizing temporal neural dynamics in AD or other neurodegenerative disorders.

摘要

脑电图非线性分析方法的最新进展已经阐明了在阿尔茨海默病(AD)中观察到的大脑活动时空动力学复杂性的降低。然而,尽管研究生理相关频率范围内的大脑活动动力学很重要,但探索AD中时间尺度依赖性分形特性的研究却少得多。Higuchi分形维数是评估大脑活动分形性的一种广泛使用的指标,但由于其需要在整个时间尺度范围内进行平均,因此失去了时间尺度特异性特征。在本研究中,我们将Higuchi分形算法改编为一种研究时间尺度特异性分形特性的方法。然后,我们比较了健康对照组(HC)和AD患者组之间时间尺度特异性分形维数的值。我们的数据表明,相对于HC组,AD组在慢时间尺度和快时间尺度上均表现出分形性降低。此外,我们证实快时间尺度上的分形性与认知衰退相关。这些特性可能为表征AD或其他神经退行性疾病中的时间神经动力学提供有用方法的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10e0/6339858/daa312f874b9/11571_2018_9509_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验