Schaeffer Hayden
Department of Mathematics , Carnegie Mellon University , Pittsburgh, PA, USA.
Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160446. doi: 10.1098/rspa.2016.0446.
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.
我们研究直接从一些给定数据中学习演化方程的问题。这项工作开发了一种学习算法,用于识别基础偏微分方程中的项,并仅使用数据来近似这些项的系数。该算法使用稀疏优化来进行特征选择和参数估计。这些特征是数据驱动的,因为它们是使用关于数据空间导数的非线性代数方程构建的。几个数值实验表明了所提出方法对数据噪声和大小的鲁棒性、捕捉数据真实特征的能力以及执行额外分析的能力。例子包括激波方程、模式形成、流体流动和湍流以及振荡对流。