Suppr超能文献

通过数据发现和稀疏优化学习偏微分方程。

Learning partial differential equations via data discovery and sparse optimization.

作者信息

Schaeffer Hayden

机构信息

Department of Mathematics , Carnegie Mellon University , Pittsburgh, PA, USA.

出版信息

Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160446. doi: 10.1098/rspa.2016.0446.

Abstract

We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.

摘要

我们研究直接从一些给定数据中学习演化方程的问题。这项工作开发了一种学习算法,用于识别基础偏微分方程中的项,并仅使用数据来近似这些项的系数。该算法使用稀疏优化来进行特征选择和参数估计。这些特征是数据驱动的,因为它们是使用关于数据空间导数的非线性代数方程构建的。几个数值实验表明了所提出方法对数据噪声和大小的鲁棒性、捕捉数据真实特征的能力以及执行额外分析的能力。例子包括激波方程、模式形成、流体流动和湍流以及振荡对流。

相似文献

3
Robust data-driven discovery of governing physical laws with error bars.通过误差线对控制物理定律进行稳健的数据驱动发现。
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180305. doi: 10.1098/rspa.2018.0305. Epub 2018 Sep 19.
5
Sparse model selection via integral terms.通过积分项进行稀疏模型选择
Phys Rev E. 2017 Aug;96(2-1):023302. doi: 10.1103/PhysRevE.96.023302. Epub 2017 Aug 2.
10
Learning data-driven discretizations for partial differential equations.学习偏微分方程的数据驱动离散化。
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15344-15349. doi: 10.1073/pnas.1814058116. Epub 2019 Jul 16.

引用本文的文献

1
Nonlinear parametric models of viscoelastic fluid flows.粘弹性流体流动的非线性参数模型。
R Soc Open Sci. 2024 Oct 2;11(10):240995. doi: 10.1098/rsos.240995. eCollection 2024 Oct.
3
Learning dynamical systems from data: An introduction to physics-guided deep learning.从数据中学习动力系统:物理引导深度学习导论。
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311808121. doi: 10.1073/pnas.2311808121. Epub 2024 Jun 24.
6
Physically informed data-driven modeling of active nematics.基于物理知识的数据驱动主动向列型建模。
Sci Adv. 2023 Jul 7;9(27):eabq6120. doi: 10.1126/sciadv.abq6120. Epub 2023 Jul 5.
8
Estimating and Assessing Differential Equation Models with Time-Course Data.基于时程数据的微分方程模型的估计和评估。
J Phys Chem B. 2023 Mar 23;127(11):2362-2374. doi: 10.1021/acs.jpcb.2c08932. Epub 2023 Mar 9.
9
Connections Between Numerical Algorithms for PDEs and Neural Networks.偏微分方程数值算法与神经网络之间的联系。
J Math Imaging Vis. 2023;65(1):185-208. doi: 10.1007/s10851-022-01106-x. Epub 2022 Jun 24.

本文引用的文献

4
Compressed modes for variational problems in mathematics and physics.数学和物理学变分问题的压缩模态。
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18368-73. doi: 10.1073/pnas.1318679110. Epub 2013 Oct 29.
5
Sparse dynamics for partial differential equations.偏微分方程的稀疏动力学。
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6634-9. doi: 10.1073/pnas.1302752110. Epub 2013 Mar 26.
7
Automated reverse engineering of nonlinear dynamical systems.非线性动力系统的自动逆向工程
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):9943-8. doi: 10.1073/pnas.0609476104. Epub 2007 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验