Lagergren John H, Nardini John T, Michael Lavigne G, Rutter Erica M, Flores Kevin B
Department of Mathematics, North Carolina State University, Raleigh, NC, USA.
Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA.
Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190800. doi: 10.1098/rspa.2019.0800. Epub 2020 Feb 19.
We investigate methods for learning partial differential equation (PDE) models from spatio-temporal data under biologically realistic levels and forms of noise. Recent progress in learning PDEs from data have used sparse regression to select candidate terms from a denoised set of data, including approximated partial derivatives. We analyse the performance in using previous methods to denoise data for the task of discovering the governing system of PDEs. We also develop a novel methodology that uses artificial neural networks (ANNs) to denoise data and approximate partial derivatives. We test the methodology on three PDE models for biological transport, i.e. the advection-diffusion, classical Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) and nonlinear Fisher-KPP equations. We show that the ANN methodology outperforms previous denoising methods, including finite differences and both local and global polynomial regression splines, in the ability to accurately approximate partial derivatives and learn the correct PDE model.
我们研究了在生物学上现实的噪声水平和形式下,从时空数据中学习偏微分方程(PDE)模型的方法。从数据中学习偏微分方程的最新进展使用了稀疏回归,从去噪数据集(包括近似偏导数)中选择候选项。我们分析了使用先前方法对数据进行去噪以发现偏微分方程控制系统的任务中的性能。我们还开发了一种新颖的方法,该方法使用人工神经网络(ANN)对数据进行去噪并近似偏导数。我们在三个生物传输的偏微分方程模型上测试了该方法,即平流扩散、经典的费希尔-柯尔莫哥洛夫-彼得罗夫斯基-皮斯库诺夫(Fisher-KPP)和非线性Fisher-KPP方程。我们表明,在准确近似偏导数和学习正确的偏微分方程模型的能力方面,人工神经网络方法优于先前的去噪方法,包括有限差分以及局部和全局多项式回归样条。