Suppr超能文献

从含噪时空数据中学习生物传输模型的偏微分方程。

Learning partial differential equations for biological transport models from noisy spatio-temporal data.

作者信息

Lagergren John H, Nardini John T, Michael Lavigne G, Rutter Erica M, Flores Kevin B

机构信息

Department of Mathematics, North Carolina State University, Raleigh, NC, USA.

Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA.

出版信息

Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190800. doi: 10.1098/rspa.2019.0800. Epub 2020 Feb 19.

Abstract

We investigate methods for learning partial differential equation (PDE) models from spatio-temporal data under biologically realistic levels and forms of noise. Recent progress in learning PDEs from data have used sparse regression to select candidate terms from a denoised set of data, including approximated partial derivatives. We analyse the performance in using previous methods to denoise data for the task of discovering the governing system of PDEs. We also develop a novel methodology that uses artificial neural networks (ANNs) to denoise data and approximate partial derivatives. We test the methodology on three PDE models for biological transport, i.e. the advection-diffusion, classical Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) and nonlinear Fisher-KPP equations. We show that the ANN methodology outperforms previous denoising methods, including finite differences and both local and global polynomial regression splines, in the ability to accurately approximate partial derivatives and learn the correct PDE model.

摘要

我们研究了在生物学上现实的噪声水平和形式下,从时空数据中学习偏微分方程(PDE)模型的方法。从数据中学习偏微分方程的最新进展使用了稀疏回归,从去噪数据集(包括近似偏导数)中选择候选项。我们分析了使用先前方法对数据进行去噪以发现偏微分方程控制系统的任务中的性能。我们还开发了一种新颖的方法,该方法使用人工神经网络(ANN)对数据进行去噪并近似偏导数。我们在三个生物传输的偏微分方程模型上测试了该方法,即平流扩散、经典的费希尔-柯尔莫哥洛夫-彼得罗夫斯基-皮斯库诺夫(Fisher-KPP)和非线性Fisher-KPP方程。我们表明,在准确近似偏导数和学习正确的偏微分方程模型的能力方面,人工神经网络方法优于先前的去噪方法,包括有限差分以及局部和全局多项式回归样条。

相似文献

1
Learning partial differential equations for biological transport models from noisy spatio-temporal data.
Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190800. doi: 10.1098/rspa.2019.0800. Epub 2020 Feb 19.
2
PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
Neural Netw. 2024 Jun;174:106242. doi: 10.1016/j.neunet.2024.106242. Epub 2024 Mar 16.
4
Non-vanishing sharp-fronted travelling wave solutions of the Fisher-Kolmogorov model.
Math Med Biol. 2022 Sep 8;39(3):226-250. doi: 10.1093/imammb/dqac004.
5
Robust data-driven discovery of governing physical laws with error bars.
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180305. doi: 10.1098/rspa.2018.0305. Epub 2018 Sep 19.
6
Learning Equations from Biological Data with Limited Time Samples.
Bull Math Biol. 2020 Sep 9;82(9):119. doi: 10.1007/s11538-020-00794-z.
7
Learning partial differential equations via data discovery and sparse optimization.
Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160446. doi: 10.1098/rspa.2016.0446.
8
Revisiting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-extinction dichotomy.
Proc Math Phys Eng Sci. 2019 Sep;475(2229):20190378. doi: 10.1098/rspa.2019.0378. Epub 2019 Sep 4.
9
Can physics-informed neural networks beat the finite element method?
IMA J Appl Math. 2024 May 23;89(1):143-174. doi: 10.1093/imamat/hxae011. eCollection 2024 Jan.
10
Discovery of Partial Differential Equations from Highly Noisy and Sparse Data with Physics-Informed Information Criterion.
Research (Wash D C). 2023 May 19;6:0147. doi: 10.34133/research.0147. eCollection 2023.

引用本文的文献

2
Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity.
NPJ Syst Biol Appl. 2025 Feb 15;11(1):20. doi: 10.1038/s41540-025-00492-3.
3
Data-driven model discovery and model selection for noisy biological systems.
PLoS Comput Biol. 2025 Jan 21;21(1):e1012762. doi: 10.1371/journal.pcbi.1012762. eCollection 2025 Jan.
4
Weak-form inference for hybrid dynamical systems in ecology.
J R Soc Interface. 2024 Dec;21(221):20240376. doi: 10.1098/rsif.2024.0376. Epub 2024 Dec 18.
5
Learning dynamical systems from data: An introduction to physics-guided deep learning.
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311808121. doi: 10.1073/pnas.2311808121. Epub 2024 Jun 24.
6
Guidelines for mechanistic modeling and analysis in cardiovascular research.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H473-H503. doi: 10.1152/ajpheart.00766.2023. Epub 2024 Jun 21.
7
From biological data to oscillator models using SINDy.
iScience. 2024 Feb 23;27(4):109316. doi: 10.1016/j.isci.2024.109316. eCollection 2024 Apr 19.
8
WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.
Multiscale Model Simul. 2021;19(3):1474-1497. doi: 10.1137/20m1343166. Epub 2021 Sep 7.
9
Learning mean-field equations from particle data using WSINDy.
Physica D. 2022 Nov;439. doi: 10.1016/j.physd.2022.133406. Epub 2022 Jun 18.
10
Verifiable biology.
J R Soc Interface. 2023 May;20(202):20230019. doi: 10.1098/rsif.2023.0019. Epub 2023 May 10.

本文引用的文献

1
Robust data-driven discovery of governing physical laws with error bars.
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180305. doi: 10.1098/rspa.2018.0305. Epub 2018 Sep 19.
2
Sparse learning of stochastic dynamical equations.
J Chem Phys. 2018 Jun 28;148(24):241723. doi: 10.1063/1.5018409.
3
Model selection for dynamical systems via sparse regression and information criteria.
Proc Math Phys Eng Sci. 2017 Aug;473(2204):20170009. doi: 10.1098/rspa.2017.0009. Epub 2017 Aug 30.
4
Mathematical Analysis of Glioma Growth in a Murine Model.
Sci Rep. 2017 May 31;7(1):2508. doi: 10.1038/s41598-017-02462-0.
5
Data-driven discovery of partial differential equations.
Sci Adv. 2017 Apr 26;3(4):e1602614. doi: 10.1126/sciadv.1602614. eCollection 2017 Apr.
6
Learning partial differential equations via data discovery and sparse optimization.
Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160446. doi: 10.1098/rspa.2016.0446.
7
Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.
J Theor Biol. 2016 Jul 7;400:103-17. doi: 10.1016/j.jtbi.2016.04.015. Epub 2016 Apr 19.
8
Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3932-7. doi: 10.1073/pnas.1517384113. Epub 2016 Mar 28.
9
A data-motivated density-dependent diffusion model of in vitro glioblastoma growth.
Math Biosci Eng. 2015 Dec;12(6):1157-72. doi: 10.3934/mbe.2015.12.1157.
10
Reproducibility of scratch assays is affected by the initial degree of confluence: Experiments, modelling and model selection.
J Theor Biol. 2016 Feb 7;390:136-45. doi: 10.1016/j.jtbi.2015.10.040. Epub 2015 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验