Suppr超能文献

从含噪时空数据中学习生物传输模型的偏微分方程。

Learning partial differential equations for biological transport models from noisy spatio-temporal data.

作者信息

Lagergren John H, Nardini John T, Michael Lavigne G, Rutter Erica M, Flores Kevin B

机构信息

Department of Mathematics, North Carolina State University, Raleigh, NC, USA.

Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA.

出版信息

Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190800. doi: 10.1098/rspa.2019.0800. Epub 2020 Feb 19.

Abstract

We investigate methods for learning partial differential equation (PDE) models from spatio-temporal data under biologically realistic levels and forms of noise. Recent progress in learning PDEs from data have used sparse regression to select candidate terms from a denoised set of data, including approximated partial derivatives. We analyse the performance in using previous methods to denoise data for the task of discovering the governing system of PDEs. We also develop a novel methodology that uses artificial neural networks (ANNs) to denoise data and approximate partial derivatives. We test the methodology on three PDE models for biological transport, i.e. the advection-diffusion, classical Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) and nonlinear Fisher-KPP equations. We show that the ANN methodology outperforms previous denoising methods, including finite differences and both local and global polynomial regression splines, in the ability to accurately approximate partial derivatives and learn the correct PDE model.

摘要

我们研究了在生物学上现实的噪声水平和形式下,从时空数据中学习偏微分方程(PDE)模型的方法。从数据中学习偏微分方程的最新进展使用了稀疏回归,从去噪数据集(包括近似偏导数)中选择候选项。我们分析了使用先前方法对数据进行去噪以发现偏微分方程控制系统的任务中的性能。我们还开发了一种新颖的方法,该方法使用人工神经网络(ANN)对数据进行去噪并近似偏导数。我们在三个生物传输的偏微分方程模型上测试了该方法,即平流扩散、经典的费希尔-柯尔莫哥洛夫-彼得罗夫斯基-皮斯库诺夫(Fisher-KPP)和非线性Fisher-KPP方程。我们表明,在准确近似偏导数和学习正确的偏微分方程模型的能力方面,人工神经网络方法优于先前的去噪方法,包括有限差分以及局部和全局多项式回归样条。

相似文献

5
Robust data-driven discovery of governing physical laws with error bars.通过误差线对控制物理定律进行稳健的数据驱动发现。
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180305. doi: 10.1098/rspa.2018.0305. Epub 2018 Sep 19.
9
Can physics-informed neural networks beat the finite element method?基于物理信息的神经网络能否击败有限元方法?
IMA J Appl Math. 2024 May 23;89(1):143-174. doi: 10.1093/imamat/hxae011. eCollection 2024 Jan.

引用本文的文献

3
Data-driven model discovery and model selection for noisy biological systems.针对有噪声的生物系统的数据驱动模型发现与模型选择
PLoS Comput Biol. 2025 Jan 21;21(1):e1012762. doi: 10.1371/journal.pcbi.1012762. eCollection 2025 Jan.
4
Weak-form inference for hybrid dynamical systems in ecology.生态学中混合动态系统的弱形式推理。
J R Soc Interface. 2024 Dec;21(221):20240376. doi: 10.1098/rsif.2024.0376. Epub 2024 Dec 18.
5
Learning dynamical systems from data: An introduction to physics-guided deep learning.从数据中学习动力系统:物理引导深度学习导论。
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311808121. doi: 10.1073/pnas.2311808121. Epub 2024 Jun 24.
6
Guidelines for mechanistic modeling and analysis in cardiovascular research.心血管研究中机制建模与分析的指南。
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H473-H503. doi: 10.1152/ajpheart.00766.2023. Epub 2024 Jun 21.
7
From biological data to oscillator models using SINDy.从生物数据到使用稀疏识别非线性动力学(SINDy)的振荡器模型
iScience. 2024 Feb 23;27(4):109316. doi: 10.1016/j.isci.2024.109316. eCollection 2024 Apr 19.
8
WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.弱稀疏识别(SINDy):基于伽辽金法的数据驱动模型选择
Multiscale Model Simul. 2021;19(3):1474-1497. doi: 10.1137/20m1343166. Epub 2021 Sep 7.
10
Verifiable biology.可验证生物学。
J R Soc Interface. 2023 May;20(202):20230019. doi: 10.1098/rsif.2023.0019. Epub 2023 May 10.

本文引用的文献

1
Robust data-driven discovery of governing physical laws with error bars.通过误差线对控制物理定律进行稳健的数据驱动发现。
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180305. doi: 10.1098/rspa.2018.0305. Epub 2018 Sep 19.
2
Sparse learning of stochastic dynamical equations.随机动力方程的稀疏学习。
J Chem Phys. 2018 Jun 28;148(24):241723. doi: 10.1063/1.5018409.
5
Data-driven discovery of partial differential equations.基于数据驱动的偏微分方程发现。
Sci Adv. 2017 Apr 26;3(4):e1602614. doi: 10.1126/sciadv.1602614. eCollection 2017 Apr.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验