Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
J Phys Chem B. 2023 Mar 23;127(11):2362-2374. doi: 10.1021/acs.jpcb.2c08932. Epub 2023 Mar 9.
Ordinary differential equation (ODE) models are widely used to describe chemical or biological processes. This Article considers the estimation and assessment of such models on the basis of time-course data. Due to experimental limitations, time-course data are often noisy, and some components of the system may not be observed. Furthermore, the computational demands of numerical integration have hindered the widespread adoption of time-course analysis using ODEs. To address these challenges, we explore the efficacy of the recently developed MAGI (MAnifold-constrained Gaussian process Inference) method for ODE inference. First, via a range of examples we show that MAGI is capable of inferring the parameters and system trajectories, including unobserved components, with appropriate uncertainty quantification. Second, we illustrate how MAGI can be used to assess and select different ODE models with time-course data based on MAGI's efficient computation of model predictions. Overall, we believe MAGI is a useful method for the analysis of time-course data in the context of ODE models, which bypasses the need for any numerical integration.
常微分方程(ODE)模型被广泛用于描述化学或生物学过程。本文基于时程数据,考虑了此类模型的估计和评估。由于实验限制,时程数据通常存在噪声,并且系统的某些组件可能无法被观测到。此外,数值积分的计算需求也阻碍了基于 ODE 的时程分析的广泛应用。为了解决这些挑战,我们探讨了最近开发的 MAGI(流形约束高斯过程推断)方法在 ODE 推断中的有效性。首先,通过一系列示例,我们表明 MAGI 能够推断参数和系统轨迹,包括不可观测的组件,并进行适当的不确定性量化。其次,我们说明了如何使用 MAGI 基于 MAGI 对模型预测的高效计算,使用时程数据评估和选择不同的 ODE 模型。总的来说,我们认为 MAGI 是 ODE 模型中分析时程数据的一种有用方法,它避免了对任何数值积分的需求。