Łydżba P, Jacak J
Faculty of Fundamental Problems of Technology , Wroclaw University of Science and Technology , Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland.
Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160758. doi: 10.1098/rspa.2016.0758.
In this paper, we recall the topological approach to quantum Hall effects. We note that, in the presence of a magnetic field, trajectories representing elements of the system's braid group are of cyclotron orbit type. In two-dimensional spaces, this leads to the restriction of the full braid group, ()-loopless generators (exchanges of coordinates or classical particles) are unenforceable. As a result, the identification of a possible Hall-like state comes down to the identification of a possible subgroup of (). The latter follows from the connection between the one-dimensional unitary representation of the system's braid group and particle statistics (unavoidable for any correlated state). In this work, we implement the topological approach to derive the lowest Landau-level pyramid of fillings. We point out that it contains all mysterious odd-denominator filling factors-like [Formula: see text], [Formula: see text] or [Formula: see text]-not trivial to explain within the standard picture. We also introduce, explicitly, cyclotron subgroup generators for all derived fractions. Preliminary results on wave functions, supported by several Monte Carlo calculations, are presented. It is worth emphasizing that not all proposed many-body functions are purely antisymmetric-they, however, transform in agreement with the scalar representations of the system's braid group. The latter is enforced by standard quantization methods.
在本文中,我们回顾了量子霍尔效应的拓扑方法。我们注意到,在存在磁场的情况下,代表系统辫子群元素的轨迹是回旋轨道类型。在二维空间中,这导致了全辫子群的限制,()无环生成元(坐标或经典粒子的交换)是不可行的。因此,确定一种可能的类霍尔态归结为确定()的一个可能子群。后者源于系统辫子群的一维酉表示与粒子统计之间的联系(对于任何相关态都是不可避免的)。在这项工作中,我们采用拓扑方法来推导最低朗道能级填充金字塔。我们指出,它包含所有神秘的奇分母填充因子,如[公式:见文本]、[公式:见文本]或[公式:见文本],在标准图景中难以解释。我们还明确引入了所有导出分数的回旋子群生成元。给出了由几个蒙特卡罗计算支持的波函数的初步结果。值得强调的是,并非所有提出的多体函数都是纯反对称的——然而,它们的变换与系统辫子群的标量表示一致。后者由标准量子化方法强制执行。