Suppr超能文献

开放式多电极生理记录系统脑电图(Open Ephys + EEG):一种用于人类神经记录的模块化、低成本、开源解决方案。

Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording.

作者信息

Black Christopher, Voigts Jakob, Agrawal Uday, Ladow Max, Santoyo Juan, Moore Christopher, Jones Stephanie

机构信息

Center for Biomedical Engineering, Brown University, Providence, RI, United States of America.

出版信息

J Neural Eng. 2017 Jun;14(3):035002. doi: 10.1088/1741-2552/aa651f. Epub 2017 Mar 7.

Abstract

OBJECTIVE

Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation.

APPROACH

Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys  +  EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments.

MAIN RESULTS

The Open Ephys  +  EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys  +  EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise.

SIGNIFICANCE

Open Ephys  +  EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.

摘要

目的

脑电图(EEG)提供了一个独特的机会,可在实验室环境内外使用最少的设备以毫秒级分辨率非侵入性地研究人类神经活动。EEG可与多种技术相结合用于闭环实验,即外部设备由特定神经信号驱动。然而,可靠的商用EEG系统价格昂贵,这通常使其对于个人使用和研究开发而言不切实际。此外,从设计上来说,这些系统中的大多数都无法轻易按照最终用户的需求进行更改。我们专注于通过实施开源工具来开发新的EEG平台,以降低研究成本并促进合作与创新,从而缓解这些问题。

方法

在此,我们展示了扩展开源电生理系统Open Ephys(www.openephys.org)以纳入人类EEG记录的方法。我们描述了将各种EEG帽与Open Ephys采集板连接所需的设备和协议,并详细介绍了数据处理方法。我们展示了Open Ephys + EEG作为研究工具的应用,并讨论了这种创新的EEG技术如何为改进闭环范式和新型脑机接口实验奠定框架。

主要结果

Open Ephys + EEG系统能够记录可靠的人类EEG数据以及人类肌电图(EMG)数据。Open Ephys + EEG系统与Brainvision ActiCHamp EEG系统之间对闭眼状态下8 - 14赫兹活动的并排比较显示,平均功率和信噪比相似。

意义

Open Ephys + EEG使用户能够获取与商用系统相当的高质量人类EEG数据,同时保持开源系统固有的价格优势和可扩展性。

相似文献

2
Open source modules for tracking animal behavior and closed-loop stimulation based on Open Ephys and Bonsai.
J Neural Eng. 2018 Oct;15(5):055002. doi: 10.1088/1741-2552/aacf45. Epub 2018 Jun 27.
3
A TinyOS-enabled MICA2-based wireless neural interface.
IEEE Trans Biomed Eng. 2006 Jul;53(7):1416-24. doi: 10.1109/TBME.2006.873760.
4
A closed-loop compressive-sensing-based neural recording system.
J Neural Eng. 2015 Jun;12(3):036005. doi: 10.1088/1741-2560/12/3/036005. Epub 2015 Apr 15.
5
A low-voltage low-power front-end for wearable EEG systems.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5282-5. doi: 10.1109/IEMBS.2007.4353533.
6
Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology.
J Neural Eng. 2017 Aug;14(4):045003. doi: 10.1088/1741-2552/aa5eea.
7
SimBSI: An open-source Simulink library for developing closed-loop brain signal interfaces in animals and humans.
Biomed Phys Eng Express. 2020 Apr 15;6(3):035023. doi: 10.1088/2057-1976/ab6e20.
8
Generic vs custom; analogue vs digital: on the implementation of an online EEG signal processing algorithm.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5876-80. doi: 10.1109/IEMBS.2008.4650551.
9
Mobile remote monitoring of biological signals.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2057-9. doi: 10.1109/IEMBS.2006.260743.

引用本文的文献

1
Task-specific invariant representation in auditory cortex.
Elife. 2024 Aug 22;12:RP89936. doi: 10.7554/eLife.89936.
2
Biochemical implications of robotic surgery: a new frontier in the operating room.
J Robot Surg. 2024 Feb 24;18(1):91. doi: 10.1007/s11701-024-01861-6.
3
Mind In Vitro Platforms: Versatile, Scalable, Robust, and Open Solutions to Interfacing with Living Neurons.
Adv Sci (Weinh). 2024 Mar;11(11):e2306826. doi: 10.1002/advs.202306826. Epub 2023 Dec 31.
5
Embodiment of a virtual prosthesis through training using an EMG-based human-machine interface: Case series.
Front Hum Neurosci. 2022 Aug 4;16:870103. doi: 10.3389/fnhum.2022.870103. eCollection 2022.
6
Building capacity through open approaches: Lessons from developing undergraduate electrophysiology practicals.
F1000Res. 2021 Mar 8;10:187. doi: 10.12688/f1000research.51049.1. eCollection 2021.
7
GI-SleepNet: A Highly Versatile Image-Based Sleep Classification Using a Deep Learning Algorithm.
Clocks Sleep. 2021 Nov 1;3(4):581-597. doi: 10.3390/clockssleep3040041.
8
Toolkit for Oscillatory Real-time Tracking and Estimation (TORTE).
J Neurosci Methods. 2022 Jan 15;366:109409. doi: 10.1016/j.jneumeth.2021.109409. Epub 2021 Nov 14.
9
Correction of amblyopia in cats and mice after the critical period.
Elife. 2021 Aug 31;10:e70023. doi: 10.7554/eLife.70023.
10

本文引用的文献

1
Slow waves, sharp waves, ripples, and REM in sleeping dragons.
Science. 2016 Apr 29;352(6285):590-5. doi: 10.1126/science.aaf3621.
2
A low-cost programmable pulse generator for physiology and behavior.
Front Neuroeng. 2014 Dec 11;7:43. doi: 10.3389/fneng.2014.00043. eCollection 2014.
3
Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology.
Curr Opin Neurobiol. 2015 Jun;32:53-9. doi: 10.1016/j.conb.2014.11.004. Epub 2014 Dec 17.
5
Entrainment of brain oscillations by transcranial alternating current stimulation.
Curr Biol. 2014 Feb 3;24(3):333-9. doi: 10.1016/j.cub.2013.12.041. Epub 2014 Jan 23.
6
The phase of prestimulus alpha oscillations affects tactile perception.
J Neurophysiol. 2014 Mar;111(6):1300-7. doi: 10.1152/jn.00125.2013. Epub 2013 Dec 31.
7
Increasing working memory capacity with theta transcranial alternating current stimulation (tACS).
Biol Psychol. 2014 Feb;96:42-7. doi: 10.1016/j.biopsycho.2013.11.006. Epub 2013 Nov 27.
8
Real-time experiment interface for biological control applications.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4160-3. doi: 10.1109/IEMBS.2010.5627397.
9
Electroencephalography (EEG) and event-related potentials (ERPs) with human participants.
Curr Protoc Neurosci. 2010 Jul;Chapter 6:Unit 6.25.1-24. doi: 10.1002/0471142301.ns0625s52.
10
A biosignal instrumentation system using capacitive coupling for power and signal isolation.
IEEE Trans Biomed Eng. 2007 Oct;54(10):1822-8. doi: 10.1109/TBME.2007.894830.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验