Suppr超能文献

胎盘喷射和巨型喷射与绒毛密度降低的关联。

Association of Placental Jets and Mega-Jets With Reduced Villous Density.

作者信息

Saghian Rojan, James Joanna L, Tawhai Merryn H, Collins Sally L, Clark Alys R

机构信息

Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand e-mail:

Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand e-mail:

出版信息

J Biomech Eng. 2017 May 1;139(5):0510011-05100110. doi: 10.1115/1.4036145.

Abstract

Spiral arteries (SAs) lie at the interface between the uterus and placenta, and supply nutrients to the placental surface. Maternal blood circulation is separated from the fetal circulation by structures called villous trees. SAs are transformed in early pregnancy from tightly coiled vessels to large high-capacity channels, which is believed to facilitate an increased maternal blood flow throughout pregnancy with minimal increase in velocity, preventing damage to delicate villous trees. Significant maternal blood flow velocities have been theorized in the space surrounding the villi (the intervillous space, IVS), particularly when SA conversion is inadequate, but have only recently been visualized reliably using pulsed wave Doppler ultrasonography. Here, we present a computational model of blood flow from SA openings, allowing prediction of IVS properties based on jet length. We show that jets of flow observed by ultrasound are likely correlated with increased IVS porosity near the SA mouth and propose that observed mega-jets (flow penetrating more than half the placental thickness) are only possible when SAs open to regions of the placenta with very sparse villous structures. We postulate that IVS tissue density must decrease at the SA mouth through gestation, supporting the hypothesis that blood flow from SAs influences villous tree development.

摘要

螺旋动脉(SAs)位于子宫和胎盘的交界处,为胎盘表面提供营养物质。母体血液循环通过称为绒毛树的结构与胎儿循环分隔开。在妊娠早期,螺旋动脉从紧密盘绕的血管转变为大容量的大通道,据信这有助于在整个孕期增加母体血流量,同时速度增加最小,从而防止对脆弱的绒毛树造成损伤。理论上,在绒毛周围的空间(绒毛间隙,IVS)中存在显著的母体血流速度,特别是当螺旋动脉转化不充分时,但直到最近才通过脉冲波多普勒超声可靠地观察到。在此,我们提出了一个从螺旋动脉开口处开始的血流计算模型,能够基于射流长度预测绒毛间隙的特性。我们表明,超声观察到的血流射流可能与螺旋动脉开口附近绒毛间隙孔隙率增加相关,并提出观察到的大射流(血流穿透胎盘厚度超过一半)仅在螺旋动脉开口于绒毛结构非常稀疏的胎盘区域时才可能出现。我们推测,在整个妊娠期,绒毛间隙组织密度在螺旋动脉开口处必定会降低,这支持了螺旋动脉血流影响绒毛树发育的假说。

相似文献

1
Association of Placental Jets and Mega-Jets With Reduced Villous Density.
J Biomech Eng. 2017 May 1;139(5):0510011-05100110. doi: 10.1115/1.4036145.
2
A multiscale model of placental oxygen exchange: The effect of villous tree structure on exchange efficiency.
J Theor Biol. 2016 Nov 7;408:1-12. doi: 10.1016/j.jtbi.2016.06.037. Epub 2016 Jul 1.
3
Developmental changes in spiral artery blood flow in the human placenta observed with colour Doppler ultrasonography.
Placenta. 2012 Oct;33(10):782-7. doi: 10.1016/j.placenta.2012.07.005. Epub 2012 Jul 24.
4
The openings of uteroplacental vessels with villous infiltration at different gestational ages.
Arch Pathol Lab Med. 2005 Mar;129(3):382-5. doi: 10.5858/2005-129-382-TOOUVW.
5
Development of the placental villous tree and its consequences for fetal growth.
Eur J Obstet Gynecol Reprod Biol. 2000 Sep;92(1):35-43. doi: 10.1016/s0301-2115(00)00423-1.
6
Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling.
Hum Reprod. 2018 Aug 1;33(8):1430-1441. doi: 10.1093/humrep/dey225.
7
Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects.
Am J Obstet Gynecol. 2016 Mar;214(3):369.e1-8. doi: 10.1016/j.ajog.2016.01.001.
8
Pathophysiology of placental-derived fetal growth restriction.
Am J Obstet Gynecol. 2018 Feb;218(2S):S745-S761. doi: 10.1016/j.ajog.2017.11.577.
9
A mathematical model of intervillous blood flow in the human placentone.
Placenta. 2010 Jan;31(1):44-52. doi: 10.1016/j.placenta.2009.11.003. Epub 2009 Nov 27.

引用本文的文献

2
A flexible generative algorithm for growing in silico placentas.
PLoS Comput Biol. 2024 Oct 7;20(10):e1012470. doi: 10.1371/journal.pcbi.1012470. eCollection 2024 Oct.
3
Unveiling the human fetal-maternal interface during the first trimester: biophysical knowledge and gaps.
Front Cell Dev Biol. 2024 Jul 31;12:1411582. doi: 10.3389/fcell.2024.1411582. eCollection 2024.
4
Blood flow and transport in the human placenta.
Annu Rev Fluid Mech. 2019 Jan;51:25-47. doi: 10.1146/annurev-fluid-010518-040219. Epub 2018 Aug 3.
5
A review of feto-placental vasculature flow modelling.
Placenta. 2023 Oct;142:56-63. doi: 10.1016/j.placenta.2023.08.068. Epub 2023 Aug 22.
6
The human placenta project: Funded studies, imaging technologies, and future directions.
Placenta. 2023 Oct;142:27-35. doi: 10.1016/j.placenta.2023.08.067. Epub 2023 Aug 21.
7
Synergistic regulation of uterine radial artery adaptation to pregnancy by paracrine and hemodynamic factors.
Am J Physiol Heart Circ Physiol. 2023 Oct 1;325(4):H790-H805. doi: 10.1152/ajpheart.00205.2023. Epub 2023 Aug 4.
8
Longitudinal assessment of spiral and uterine arteries in normal pregnancy using novel ultrasound tool.
Ultrasound Obstet Gynecol. 2023 Dec;62(6):860-866. doi: 10.1002/uog.26312.
9
Multi-scale Modelling of Shear Stress on the Syncytiotrophoblast: Could Maternal Blood Flow Impact Placental Function Across Gestation?
Ann Biomed Eng. 2023 Jun;51(6):1256-1269. doi: 10.1007/s10439-022-03129-2. Epub 2023 Feb 6.
10
Longitudinal assessment of spiral artery and intravillous arteriole blood flow and adverse pregnancy outcome.
Ultrasound Obstet Gynecol. 2022 Mar;59(3):350-357. doi: 10.1002/uog.23760.

本文引用的文献

2
Fetoplacental vascular alterations associated with fetal growth restriction.
Placenta. 2014 Oct;35(10):808-15. doi: 10.1016/j.placenta.2014.07.013. Epub 2014 Aug 6.
3
Developmental changes in spiral artery blood flow in the human placenta observed with colour Doppler ultrasonography.
Placenta. 2012 Oct;33(10):782-7. doi: 10.1016/j.placenta.2012.07.005. Epub 2012 Jul 24.
5
Transport in the placenta: homogenizing haemodynamics in a disordered medium.
Philos Trans A Math Phys Eng Sci. 2011 Nov 13;369(1954):4162-82. doi: 10.1098/rsta.2011.0170.
6
Analysis of placental weight centiles is useful to estimate cause of fetal growth restriction.
J Obstet Gynaecol Res. 2011 Nov;37(11):1658-65. doi: 10.1111/j.1447-0756.2011.01600.x. Epub 2011 Jul 27.
7
Sonographic study of the decidua basalis in early pregnancy loss.
Ultrasound Obstet Gynecol. 2010 Sep;36(3):362-7. doi: 10.1002/uog.7736.
8
Pre-eclampsia: fitting together the placental, immune and cardiovascular pieces.
J Pathol. 2010 Aug;221(4):363-78. doi: 10.1002/path.2719.
9
Review: Trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel.
Placenta. 2010 Mar;31 Suppl:S93-8. doi: 10.1016/j.placenta.2009.12.012. Epub 2010 Jan 8.
10
A mathematical model of intervillous blood flow in the human placentone.
Placenta. 2010 Jan;31(1):44-52. doi: 10.1016/j.placenta.2009.11.003. Epub 2009 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验