Crooks Richard O, Lathbridge Alexander, Panek Anna S, Mason Jody M
Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K.
Biochemistry. 2017 Mar 21;56(11):1573-1584. doi: 10.1021/acs.biochem.7b00047. Epub 2017 Mar 13.
A major biochemical goal is the ability to mimic nature in engineering highly specific protein-protein interactions (PPIs). We previously devised a computational interactome screen to identify eight peptides that form four heterospecific dimers despite 32 potential off-targets. To expand the speed and utility of our approach and the PPI toolkit, we have developed new software to derive much larger heterospecific sets (≥24 peptides) while directing against antiparallel off-targets. It works by predicting T values for every dimer on the basis of core, electrostatic, and helical propensity components. These guide interaction specificity, allowing heterospecific coiled coil (CC) sets to be incrementally assembled. Prediction accuracy is experimentally validated using circular dichroism and size exclusion chromatography. Thermal denaturation data from a 22-CC training set were used to improve software prediction accuracy and verified using a 136-CC test set consisting of eight predicted heterospecific dimers and 128 off-targets. The resulting software, qCIPA, individually now weighs core a-a' (II/NN/NI) and electrostatic g-e' (EE/EK/KK) components. The expanded data set has resulted in emerging sequence context rules for otherwise energetically equivalent CCs; for example, introducing intrahelical electrostatic charge blocks generated increased stability for designed CCs while concomitantly decreasing the stability of off-target CCs. Coupled with increased prediction accuracy and speed, the approach can be applied to a wide range of downstream chemical and synthetic biology applications, in addition more generally to impose specificity on structurally unrelated PPIs.
一个主要的生化目标是能够在工程中模拟自然,实现高度特异性的蛋白质-蛋白质相互作用(PPI)。我们之前设计了一种计算相互作用组筛选方法,以识别出八个肽段,它们能形成四个异源特异性二聚体,尽管存在32个潜在的脱靶情况。为了提高我们方法的速度和实用性以及PPI工具包的性能,我们开发了新软件,以生成更大的异源特异性集合(≥24个肽段),同时针对反平行脱靶情况。该软件通过基于核心、静电和螺旋倾向性成分预测每个二聚体的T值来工作。这些因素指导相互作用特异性,从而逐步组装异源特异性卷曲螺旋(CC)集合。使用圆二色性和尺寸排阻色谱对预测准确性进行了实验验证。来自一个22个CC的训练集的热变性数据用于提高软件预测准确性,并使用一个由八个预测的异源特异性二聚体和128个脱靶组成的136个CC的测试集进行了验证。由此产生的软件qCIPA现在分别权衡核心a-a'(II/NN/NI)和静电g-e'(EE/EK/KK)成分。扩展后的数据集产生了针对在能量上等效的CC的新序列上下文规则;例如,引入螺旋内静电电荷块可提高设计的CC的稳定性,同时降低脱靶CC的稳定性。再加上预测准确性和速度的提高,该方法可应用于广泛的下游化学和合成生物学应用,更普遍地说,还可用于对结构不相关的PPI施加特异性。