Department of Physics, Clarendon Laboratory , University of Oxford , Parks Road , Oxford OX1 3PU , United Kingdom.
School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom.
ACS Nano. 2019 Sep 24;13(9):9927-9935. doi: 10.1021/acsnano.9b04251. Epub 2019 Aug 8.
In nature, co-assembly of polypeptides, nucleic acids, and polysaccharides is used to create functional supramolecular structures. Here, we show that DNA nanostructures can be used to template interactions between peptides and to enable the quantification of multivalent interactions that would otherwise not be observable. Our functional building blocks are peptide-oligonucleotide conjugates comprising designed dimeric coiled-coil peptides covalently linked to oligonucleotide tags. These conjugates are incorporated in megadalton DNA origami nanostructures and direct nanostructure association through peptide-peptide interactions. Free and bound nanostructures can be counted directly from electron micrographs, allowing estimation of the dissociation constants of the peptides linking them. Results for a single peptide-peptide interaction are consistent with the measured solution-phase free energy; DNA nanostructures displaying multiple peptides allow the effects of polyvalency to be probed. This use of DNA nanostructures as identifiers allows the binding strengths of homo- and heterodimeric peptide combinations to be measured in a single experiment and gives access to dissociation constants that are too low to be quantified by conventional techniques. The work also demonstrates that hybrid biomolecules can be programmed to achieve spatial organization of complex synthetic biomolecular assemblies.
在自然界中,多肽、核酸和多糖的共组装被用于构建功能性超分子结构。在这里,我们展示了 DNA 纳米结构可以作为模板用于调控多肽之间的相互作用,从而可以对多价相互作用进行定量分析,而这些多价相互作用在没有模板的情况下是无法观察到的。我们的功能构建模块是由设计的二聚体卷曲螺旋肽通过共价键连接到寡核苷酸标签组成的肽-寡核苷酸缀合物。这些缀合物被整合到兆道尔顿 DNA 折纸纳米结构中,并通过肽-肽相互作用来指导纳米结构的组装。游离和结合的纳米结构可以直接从电子显微镜照片中计数,从而可以估计连接它们的肽的离解常数。对于单个肽-肽相互作用的结果与测量的溶液相自由能一致;展示多个肽的 DNA 纳米结构可以探测多价效应。这种使用 DNA 纳米结构作为标识符的方法可以在单个实验中测量同型和异型二聚体肽组合的结合强度,并获得传统技术无法定量的离解常数。这项工作还表明,杂交生物分子可以被编程以实现复杂的合成生物分子组装的空间组织。