Suppr超能文献

使用切比雪夫多项式从尖峰活动中识别时变神经动力学。

Identification of time-varying neural dynamics from spiking activities using Chebyshev polynomials.

作者信息

Chan Rosa H M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1591-1594. doi: 10.1109/EMBC.2016.7591016.

Abstract

Neural plasticity, elicited by processes such as development and learning, is an important biological attribute which can be viewed as a time-varying property of the nervous system. In this paper, we investigated the novel use of Chebyshev polynomials to estimate the changes in model parameters efficiently for time-varying dynamical systems with binary inputs and outputs. A forward orthogonal least square (FOLS) algorithm selected the significant model terms. Extensive simulations showed that the proposed algorithm identified the system changes more accurately in comparison with adaptive filter. This approach can be applied to identify not only gradual but also abrupt temporal evolutions of neural dynamics underlying nervous system activity with high sensitivity and accuracy by observing input and output spike trains only.

摘要

由发育和学习等过程引发的神经可塑性是一种重要的生物学属性,可被视为神经系统的时变特性。在本文中,我们研究了切比雪夫多项式的新用途,以有效地估计具有二进制输入和输出的时变动态系统的模型参数变化。前向正交最小二乘(FOLS)算法选择了重要的模型项。大量模拟表明,与自适应滤波器相比,所提出的算法能更准确地识别系统变化。通过仅观察输入和输出脉冲序列,这种方法不仅可以应用于识别神经系统活动背后神经动力学的渐进性变化,还能以高灵敏度和准确性识别其突然的时间演变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验