Suppr超能文献

用于人类乳腺组织分类的不同尺度OCT图像纹理特征的比较研究。

Comparative study of texture features in OCT images at different scales for human breast tissue classification.

作者信息

Chang Ernest, Bin Amir Syed, Hibshoosh Hanina, Feldman Sheldon, Hendon Christine P

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3926-3929. doi: 10.1109/EMBC.2016.7591586.

Abstract

Breast cancer is the second leading cause of death in women in the United States due to cancer. Early detection of breast cancerous regions will aid the diagnosis, staging, and treatment of breast cancer. Optical coherence tomography (OCT), a non-invasive imaging modality with high resolution, has been widely used to visualize various tissue types within the human breast and has demonstrated great potential for assessing tumor margins. Imaging large resected samples with a fast imaging speed can be accomplished by under-sampling in the spatial domain, resulting in a large image scale. However, it is unclear whether there is an impact on the ability to classify tissue types based on the selected imaging scale. Our objective is to evaluate how the scale at which the images are acquired impacts texture features and the accuracy of an automated classification algorithm. To this end, we present a comparative study of texture features in OCT images at two image scales for human breast tissue classification. Texture features and attenuation coefficients were inputs to a statistical classification model, relevance vector machine. The automated classification results from the two image scales were compared. We found that more informative tissue features are preserved in small image scale and accordingly, small image scale leads to more accurate tissue type classification.

摘要

乳腺癌是美国女性因癌症死亡的第二大主要原因。早期检测出乳腺癌区域将有助于乳腺癌的诊断、分期和治疗。光学相干断层扫描(OCT)是一种具有高分辨率的非侵入性成像方式,已被广泛用于可视化人乳腺内的各种组织类型,并在评估肿瘤边缘方面显示出巨大潜力。通过在空间域进行欠采样,可以以快速成像速度对大的切除样本进行成像,从而得到大尺寸的图像。然而,尚不清楚基于所选成像尺寸对组织类型分类能力是否有影响。我们的目标是评估图像采集的尺寸如何影响纹理特征以及自动分类算法的准确性。为此,我们针对人乳腺组织分类,在两种图像尺寸下对OCT图像中的纹理特征进行了比较研究。纹理特征和衰减系数被输入到一个统计分类模型——相关向量机中。比较了两种图像尺寸下的自动分类结果。我们发现,在小尺寸图像中保留了更多信息丰富的组织特征,因此,小尺寸图像能带来更准确的组织类型分类。

相似文献

1
Comparative study of texture features in OCT images at different scales for human breast tissue classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3926-3929. doi: 10.1109/EMBC.2016.7591586.
2
Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
Lasers Surg Med. 2017 Mar;49(3):258-269. doi: 10.1002/lsm.22654. Epub 2017 Mar 6.
3
Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.
Med Image Anal. 2017 May;38:104-116. doi: 10.1016/j.media.2017.03.002. Epub 2017 Mar 8.
5
A Fusion-Based Approach for Breast Ultrasound Image Classification Using Multiple-ROI Texture and Morphological Analyses.
Comput Math Methods Med. 2016;2016:6740956. doi: 10.1155/2016/6740956. Epub 2016 Dec 29.
6
Fractal analysis for classification of breast carcinoma in optical coherence tomography.
J Biomed Opt. 2011 Jun;16(6):066010. doi: 10.1117/1.3590746.
8
Interpretation of Optical Coherence Tomography Images for Breast Tissue Assessment.
Surg Innov. 2019 Feb;26(1):50-56. doi: 10.1177/1553350618803245. Epub 2018 Oct 7.
9
Intraoperative optical coherence tomography for soft tissue sarcoma differentiation and margin identification.
Lasers Surg Med. 2017 Mar;49(3):240-248. doi: 10.1002/lsm.22633. Epub 2017 Mar 20.

引用本文的文献

1
Compressed sensing of human breast optical coherence 3-D image volume data using predictive coding.
Biomed Opt Express. 2023 Oct 12;14(11):5720-5734. doi: 10.1364/BOE.502851. eCollection 2023 Nov 1.
2
Wide-field optical coherence tomography for microstructural analysis of key tissue types: a proof-of-concept evaluation.
Pathol Oncol Res. 2023 Jul 14;29:1611167. doi: 10.3389/pore.2023.1611167. eCollection 2023.

本文引用的文献

1
Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography.
J Biomed Opt. 2016 Jun;21(6):61006. doi: 10.1117/1.JBO.21.6.061006.
2
Automated classification of optical coherence tomography images of human atrial tissue.
J Biomed Opt. 2016 Oct;21(10):101407. doi: 10.1117/1.JBO.21.10.101407.
3
Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue.
Cancer Res. 2015 Aug 15;75(16):3236-45. doi: 10.1158/0008-5472.CAN-14-3694. Epub 2015 Jun 29.
5
Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography.
J Biomed Opt. 2013 Sep;18(9):096012. doi: 10.1117/1.JBO.18.9.096012.
6
Fractal analysis for classification of breast carcinoma in optical coherence tomography.
J Biomed Opt. 2011 Jun;16(6):066010. doi: 10.1117/1.3590746.
8
Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts.
Eur Radiol. 2010 Mar;20(3):734-42. doi: 10.1007/s00330-009-1588-y. Epub 2009 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验