Suppr超能文献

结合开放域知识与生物医学知识用于消费者健康问题中的主题识别

Combining Open-domain and Biomedical Knowledge for Topic Recognition in Consumer Health Questions.

作者信息

Mrabet Yassine, Kilicoglu Halil, Roberts Kirk, Demner-Fushman Dina

机构信息

Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine, Bethesda, MD, USA.

University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

AMIA Annu Symp Proc. 2017 Feb 10;2016:914-923. eCollection 2016.

Abstract

Determining the main topics in consumer health questions is a crucial step in their processing as it allows narrowing the search space to a specific semantic context. In this paper we propose a topic recognition approach based on biomedical and open-domain knowledge bases. In the first step of our method, we recognize named entities in consumer health questions using an unsupervised method that relies on a biomedical knowledge base, UMLS, and an open-domain knowledge base, DBpedia. In the next step, we cast topic recognition as a binary classification problem of deciding whether a named entity is the question topic or not. We evaluated our approach on a dataset from the National Library of Medicine (NLM), introduced in this paper, and another from the Genetic and Rare Disease Information Center (GARD). The combination of knowledge bases outperformed the results obtained by individual knowledge bases by up to 16.5% F1 and achieved state-of-the-art performance. Our results demonstrate that combining open-domain knowledge bases with biomedical knowledge bases can lead to a substantial improvement in understanding user-generated health content.

摘要

确定消费者健康问题中的主要主题是处理这些问题的关键步骤,因为它可以将搜索空间缩小到特定的语义上下文。在本文中,我们提出了一种基于生物医学和开放域知识库的主题识别方法。在我们方法的第一步中,我们使用一种无监督方法识别消费者健康问题中的命名实体,该方法依赖于生物医学知识库UMLS和开放域知识库DBpedia。在下一步中,我们将主题识别转换为一个二元分类问题,即决定一个命名实体是否为问题主题。我们在本文介绍的来自美国国立医学图书馆(NLM)的数据集以及来自遗传和罕见病信息中心(GARD)的另一个数据集上评估了我们的方法。知识库的组合在F1值上比单个知识库获得的结果高出16.5%,并达到了当前的最佳性能。我们的结果表明,将开放域知识库与生物医学知识库相结合可以显著提高对用户生成的健康内容的理解。

相似文献

3
Co-occurrence graphs for word sense disambiguation in the biomedical domain.
Artif Intell Med. 2018 May;87:9-19. doi: 10.1016/j.artmed.2018.03.002. Epub 2018 Mar 21.
5
Enhancing knowledge representations by ontological relations.
Stud Health Technol Inform. 2008;136:791-6.
6
Linked open data-based framework for automatic biomedical ontology generation.
BMC Bioinformatics. 2018 Sep 10;19(1):319. doi: 10.1186/s12859-018-2339-3.
9
Discovering biomedical semantic relations in PubMed queries for information retrieval and database curation.
Database (Oxford). 2016 Mar 25;2016. doi: 10.1093/database/baw025. Print 2016.
10
Automatically classifying question types for consumer health questions.
AMIA Annu Symp Proc. 2014 Nov 14;2014:1018-27. eCollection 2014.

引用本文的文献

1
Classifying unstructured electronic consult messages to understand primary care physician specialty information needs.
J Am Med Inform Assoc. 2022 Aug 16;29(9):1607-1617. doi: 10.1093/jamia/ocac092.
2
A question-entailment approach to question answering.
BMC Bioinformatics. 2019 Oct 22;20(1):511. doi: 10.1186/s12859-019-3119-4.
4
On the Role of Question Summarization and Information Source Restriction in Consumer Health Question Answering.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:117-126. eCollection 2019.
5
UMLS to DBPedia link discovery through circular resolution.
J Am Med Inform Assoc. 2018 Jul 1;25(7):819-826. doi: 10.1093/jamia/ocy021.
6
Semantic annotation of consumer health questions.
BMC Bioinformatics. 2018 Feb 6;19(1):34. doi: 10.1186/s12859-018-2045-1.

本文引用的文献

1
Interactive use of online health resources: a comparison of consumer and professional questions.
J Am Med Inform Assoc. 2016 Jul;23(4):802-11. doi: 10.1093/jamia/ocw024. Epub 2016 May 4.
2
An Ensemble Method for Spelling Correction in Consumer Health Questions.
AMIA Annu Symp Proc. 2015 Nov 5;2015:727-36. eCollection 2015.
3
Automatically classifying question types for consumer health questions.
AMIA Annu Symp Proc. 2014 Nov 14;2014:1018-27. eCollection 2014.
4
CliniQA : highly reliable clinical question answering system.
Stud Health Technol Inform. 2012;180:215-9.
5
The MiPACQ clinical question answering system.
AMIA Annu Symp Proc. 2011;2011:171-80. Epub 2011 Oct 22.
6
The role of patient satisfaction in online health information seeking.
J Health Commun. 2010 Jan;15(1):3-17. doi: 10.1080/10810730903465491.
7
Biomedical question answering: a survey.
Comput Methods Programs Biomed. 2010 Jul;99(1):1-24. doi: 10.1016/j.cmpb.2009.10.003. Epub 2009 Nov 13.
9
The Unified Medical Language System (UMLS): integrating biomedical terminology.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. doi: 10.1093/nar/gkh061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验