Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan;
Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2476-E2485. doi: 10.1073/pnas.1616815114. Epub 2017 Mar 7.
The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca rhythms phase-lead the voltage rhythms in AVP neurons but Ca and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca rhythms produce coherent voltage rhythms.
视交叉上核(SCN)是主生物钟,包含一个由多种类型神经元组成的网络,这些神经元被认为形成了一个分层的多振荡器系统。SCN 神经元中的分子时钟机制驱动膜兴奋性,并向大脑区域和外周器官发送时间提示信号。然而,这些神经元如何以及在一天中的什么时候传递输出信号在很大程度上仍是未知的。在这里,我们使用基因编码的电压传感器 ArcLightD 成功地对培养切片中的整个 SCN 网络进行了多日的光控昼夜电压节律可视化。出乎意料的是,电压节律在整个 SCN 网络中被同步,而同时记录的 Ca 节律在背侧和腹侧区域具有拓扑特异性。我们进一步发现,这两种节律的时间顺序具有细胞类型特异性:在 AVP 神经元中,Ca 节律相位领先于电压节律,但在 VIP 神经元中,Ca 和电压节律几乎同相。我们证实昼夜放电节律也是同步的,并与电压节律耦合。这些结果表明,具有异步 Ca 节律的 SCN 网络产生相干的电压节律。