School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA.
School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA.
Sensors (Basel). 2020 Sep 18;20(18):5356. doi: 10.3390/s20185356.
Human activity recognition (HAR) is growing in popularity due to its wide-ranging applications in patient rehabilitation and movement disorders. HAR approaches typically start with collecting sensor data for the activities under consideration and then develop algorithms using the dataset. As such, the success of algorithms for HAR depends on the availability and quality of datasets. Most of the existing work on HAR uses data from inertial sensors on wearable devices or smartphones to design HAR algorithms. However, inertial sensors exhibit high noise that makes it difficult to segment the data and classify the activities. Furthermore, existing approaches typically do not make their data available publicly, which makes it difficult or impossible to obtain comparisons of HAR approaches. To address these issues, we present wearable HAR (w-HAR) which contains labeled data of seven activities from 22 users. Our dataset's unique aspect is the integration of data from inertial and wearable stretch sensors, thus providing two modalities of activity information. The wearable stretch sensor data allows us to create variable-length segment data and ensure that each segment contains a single activity. We also provide a HAR framework to use w-HAR to classify the activities. To this end, we first perform a design space exploration to choose a neural network architecture for activity classification. Then, we use two online learning algorithms to adapt the classifier to users whose data are not included at design time. Experiments on the w-HAR dataset show that our framework achieves 95% accuracy while the online learning algorithms improve the accuracy by as much as 40%.
人体活动识别(HAR)由于其在患者康复和运动障碍中的广泛应用而越来越受欢迎。HAR 方法通常从收集所考虑活动的传感器数据开始,然后使用数据集开发算法。因此,HAR 算法的成功取决于数据集的可用性和质量。现有的大多数 HAR 工作都使用来自可穿戴设备或智能手机上的惯性传感器的数据来设计 HAR 算法。然而,惯性传感器会产生很高的噪声,这使得数据分割和活动分类变得困难。此外,现有的方法通常不公开其数据,这使得很难或不可能对 HAR 方法进行比较。为了解决这些问题,我们提出了可穿戴 HAR(w-HAR),其中包含来自 22 位用户的七种活动的标记数据。我们数据集的独特之处在于集成了惯性和可穿戴拉伸传感器的数据,从而提供了两种活动信息的模式。可穿戴拉伸传感器数据允许我们创建可变长度的分段数据,并确保每个分段包含单个活动。我们还提供了一个 HAR 框架,以使用 w-HAR 对活动进行分类。为此,我们首先进行设计空间探索,以选择用于活动分类的神经网络架构。然后,我们使用两种在线学习算法来适应在设计时未包含数据的用户的分类器。在 w-HAR 数据集上的实验表明,我们的框架实现了 95%的准确率,而在线学习算法将准确率提高了多达 40%。